Characterization of Sulfur/Graphitized Mesocarbon Microbeads Composite Cathodes for Li-S Batteries

Article Preview

Abstract:

Cathode optimization is vital for improving the performance of Li-S batteries. Various carbon materials with special morphologies have been proposed and verified to form optimized sulfur/carbon (S/C) cathodes owning high cycling and rate performances. However, the high cost and complexity of material preparation processes hinder their commercialization. Herein, graphitized mesocarbon microbeads (g-MCMB) were used to form sulfur/carbon cathodes for Li-S battery. By simply dry-mixing sulfur powder with g-MCMB, S/g-MCMB cathodes were formed and characterized by galvanostatic charge-discharge tests, electrochemical impedance spectroscopy and scanning electron microscopy. Compared with S/C cathodes using acetylene black, S/g-MCMB cathodes show better cycling performance, but worse rate performance, which can be attributed to the size and morphologies of g-MCMB particles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

87-94

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.J. Peng, J.Q. Huang, X.B. Cheng and Q. Zhang, Review on high-loading and high-energy lithium-sulfur batteries, Adv. Energy Mater. 7 (2017) 1700260.

DOI: 10.1002/aenm.201700260

Google Scholar

[2] Y.X. Yin, S. Xin, Y.G. Guo and L.J. Wan, Lithium-sulfur batteries: electrochemistry, materials, and prospects, Angew. Chemie Int. Ed. 52 (2013) 13186.

DOI: 10.1002/anie.201304762

Google Scholar

[3] R.P. Fang, S.Y. Zhao, Z.H. Sun, D.W. Wang, H.M. Cheng and F. Li, More reliable lithium-sulfur batteries: status, solutions and prospects, Adv. Mater. 29 (2017) 1606823.

DOI: 10.1002/adma.201606823

Google Scholar

[4] X.Q. Zhang, C. Liu, Y. Gao, J.M. Zhang and Y.Q. Wang, Research progress of sulfur/carbon composite cathode materials and the corresponding safe electrolytes for advanced Li-S batteries, Nano 15 (2020) 2030002.

DOI: 10.1142/s1793292020300029

Google Scholar

[5] J. Xu, T. Lawson, H. Fan, D. Su and G. Wang, Updated metal compounds (MOFs, -S, -OH, -N, -C) used as cathode materials for lithium-sulfur batteries, Adv. Energy Mater. 8 (2018) 1702607.

DOI: 10.1002/aenm.201702607

Google Scholar

[6] X. Xiong, W. Yan, C. You, Y. Zhu, Y. Chen, L. Fu, Y. Zhang, N. Yu and Y. Wu, Methods to improve lithium metal anode for Li-S batteries, Front. Chem. 7 (2019) 827.

DOI: 10.3389/fchem.2019.00827

Google Scholar

[7] W. Chen, T. Lei, C. Wu, M. Deng, C. Gong, K. Hu, Y. Ma, L. Dai, W. Lv, W. He, X. Liu, J. Xiong and C. Yan, Designing safe electrolyte systems for a high-stability lithium-sulfur battery, Adv. Energy Mater. 8 (2018) 1702348.

DOI: 10.1002/aenm.201702348

Google Scholar

[8] Y. He, Y. Qiao and H. Zhou, Recent advances in functional modification of separators in lithium–sulfur batteries, Dalton Trans. 47 (2018) 6881.

DOI: 10.1039/c7dt04717g

Google Scholar

[9] X. Ji, K.T. Lee and L.F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries, Nat. Mater. 8 (2009) 500.

DOI: 10.1038/nmat2460

Google Scholar

[10] H. Wang, Y. Yang, Y. Liang, J.T. Robinson, Y. Li, A. Jackson, Y. Cui and H. Dai, Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability, Nano Lett. 11 (2011) 2644.

DOI: 10.1021/nl200658a

Google Scholar

[11] S. Evers and L.F. Nazar, Graphene-enveloped sulfur in a one pot reaction: a cathode with good coulombic efficiency and high practical sulfur content, Chem. Commun. 48 (2012) 1233.

DOI: 10.1039/c2cc16726c

Google Scholar

[12] M. Shaibani, A. Akbari, P. Sheath, C.D. Easton, P.C. Banerjee, K. Konstas, A. Fakhfouri, M. Barghamadi, M.M. Musameh, A.S. Best, T. Rüther, P.J. Mahon, M.R. Hill, A.F. Hollenkamp and M. Majumder, Suppressed polysulfide crossover in Li-S batteries through a high-flux graphene oxide membrane supported on a sulfur cathode, ACS Nano 10 (2016) 7768.

DOI: 10.1021/acsnano.6b03285

Google Scholar

[13] J.L. Gómez-Urbano, J.L. Gómez-Cámer, C. Botas, N. Díez, J.M. López del Amo, L.M. Rodríguez-Martinez, D. Carriazo and T. Rojo, Hydrothermally reduced graphene oxide for the effective wrapping of sulfur particles showing long term stability as electrodes for Li-S batteries, Carbon N. Y. 139 (2018) 226.

DOI: 10.1016/j.carbon.2018.06.053

Google Scholar

[14] K. Urita, T. Fujimori, H. Notohara and I. Moriguchi, Direct observation of electrochemical lithium–sulfur reaction inside carbon nanotubes, ACS Appl. Energy Mater. 1 (2018) 807.

DOI: 10.1021/acsaem.7b00258

Google Scholar

[15] X.Q. Zhang, B. He, W.C. Li and A.H. Lu, Hollow carbon nanofibers with dynamic adjustable pore sizes and closed ends as hosts for high-rate lithium-sulfur battery cathodes, Nano Res. 11 (2018) 1238.

DOI: 10.1007/s12274-017-1737-6

Google Scholar

[16] J. Yao, G.X. Wang, J. Ahn, H. K. Liu and S.X. Dou, Electrochemical studies of graphitized mesocarbon microbeads as an anode in lithium-ion cells, Journal of Power Sources 114 (2003) 292.

DOI: 10.1016/s0378-7753(02)00585-2

Google Scholar

[17] Q. Jin, X. Qi, F. Yang, R. Jiang, Y. Xie, L. Qie and Y. Huang, The failure mechanism of lithium-sulfur batteries under lean-ether-electrolyte conditions, Energy Storage Materials 38 (2021) 255.

DOI: 10.1016/j.ensm.2021.03.014

Google Scholar

[18] Y. Xie, G. Pan, Q. Jin, X. Qi, T. Wang, W. Li, H. Xu, Y. Zheng, S. Li, L. Qie, Y. Huang and J. Li, Semi‐flooded culfur cathode with ultralean absorbed electrolyte in Li–S battery, Adv. Sci. 7 (2020) 1903168.

DOI: 10.1002/advs.201903168

Google Scholar

[19] M. Zhao, B.Q. Li, H.J. Peng, H. Yuan, J.Y. Wei and J.Q. Huang, Challenges and opportunities towards practical lithium-sulfur batteries under lean electrolyte conditions, Angew. Chem. Int. Ed. 56 (2020) 12636.

DOI: 10.1002/anie.201909339

Google Scholar

[20] S. Myhra and J. C. Rivière, Characterization of Nanostructures , first ed., CRC Press, (2013).

Google Scholar

[21] F. Wu, S. Zhao, J. Li, Y. Lu, Y. Su, L. Chen, L. Bao, J. Yao and X. Liu, Hand-in-hand reinforced rGO film used as an auxiliary functional layer for high-performance Li–S batteries, ACS Appl. Mater. Interfaces 11 (2019) 12544.

DOI: 10.1021/acsami.9b00845

Google Scholar

[22] N.A. Cañas, K. Hirose, B. Pascucci, N. Wagner, K.A. Friedrich and R. Hiesgen, Investigations of lithium–sulfur batteries using electrochemical impedance spectroscopy, Electrochim. Acta 97 (2013) 42.

DOI: 10.1016/j.electacta.2013.02.101

Google Scholar

[23] L. Yuan, X. Qiu, L. Chen and W. Zhu, New insight into the discharge process of sulfur cathode by electrochemical impedance spectroscopy, J. Power Sources 189 (2009) 127.

DOI: 10.1016/j.jpowsour.2008.10.033

Google Scholar