[1]
KOHLSDORF A, TAFFA D H, WARK M. Microwave assisted synthesis of Ta2O5 nanostructures for photocatalytic hydrogen production, J. Photoch. Photobio. A. 366(2018)41-47.
DOI: 10.1016/j.jphotochem.2018.03.036
Google Scholar
[2]
HR A, MGHA B, MMH A. Ta2O5-incorporated in photoinduced electrocatalyst of TiO2-RuO2 decorated by PPy-NrGO nanocomposite for boosting overall water splitting, J. Colloid Interf. Sci. 582(2021) 254-269.
DOI: 10.1016/j.jcis.2020.08.028
Google Scholar
[3]
GENG X, XU Y, WANG P, et al. Synthesis of (NH4)2Ta2O3F6 mesocrystals via a hydrothermal route and their conversion to TaO2F and Ta2O5 mesocrystals for photocatalytic dyes degradation, Ceram. Int. 15 (2021) 13865-13873.
DOI: 10.1016/j.ceramint.2021.01.253
Google Scholar
[4]
YU, XIN, HU, et al. Defect engineered Ta2O5 nanorod: One-pot synthesis, visible-light driven hydrogen generation and mechanism, Appl. Catal. B-Environ. 217(2017) 48 -56.
DOI: 10.1016/j.apcatb.2017.05.024
Google Scholar
[5]
JIANG H, ZHANG W, ZANG S, et al. Rh nanospheres anchored TaON@Ta2O5 nanophotocatalyst for efficient hydrogen evolution from photocatalytic water splitting under visible light irradiation, Int. J. Hydrogen Energ. 44(2019) 24218-24227.
DOI: 10.1016/j.ijhydene.2019.07.166
Google Scholar
[6]
TANG Y, HUANG J, LIU S, et al. Surface engineering induced superstructure Ta2O5-x mesocrystals for enhanced visible light photocatalytic antibiotic degradation, J. Colloid Interf. Sci. 596(2021):468-478.
DOI: 10.1016/j.jcis.2021.03.118
Google Scholar
[7]
MMA B, NB C, Lr A, et al. A novel two-step route for synthesizing pure Ta2O5 nanoparticles with enhanced photocatalytic activity, Ceram. Int. 45(2019) 6268- 6274.
DOI: 10.1016/j.ceramint.2018.12.108
Google Scholar
[8]
YU X, LIU G, LI W, et al. Mesocrystalline Ta2O5 nanosheets supported Pd Pt nanoparticles for efficient photocatalytic hydrogen production, Int. J. Hydrogen Energ. 43(2018) 8232-8242.
DOI: 10.1016/j.ijhydene.2018.03.112
Google Scholar
[9]
LI J, DAI W, WU G, et al. Fabrication of Ta2O5 Films on Tantalum Substrate for Efficient Photocatalysis, Catal. Commun. 65(2015) 24-29.
DOI: 10.1016/j.catcom.2015.02.006
Google Scholar
[10]
WANG, Chun Q, SIYI, et al. Highly efficient visible-light driven photocatalytic hydrogen evolution over Er3+:YAIO(3)/Ta2O5/rGO/MoSe2 nanocomposite, J. Mol. Liq. 260 (2018) 375-385.
DOI: 10.1016/j.molliq.2018.03.110
Google Scholar
[11]
DUAN J, SHI W, XU L, et al. Hierarchical nanostructures of fluorinated and naked Ta2O5 single crystalline nano-rods: hydrothermal preparation, formation mechanism and photocatalytic activity for H2 production, Chem. Commun. 48(2012) 7301-7303.
DOI: 10.1039/c2cc33211f
Google Scholar
[12]
ZHAO S H, YANG Z B, ZHAO X M, et al. Green preparation and supercapacitive performance of NiCo2S4@ACF heterogeneous electrode materials, J. Inorg. Mater. 34(2019) 130-136.
Google Scholar
[13]
YU H, SUN D, LIU J, et al. Monodisperse mesoporous Ta2O5 colloidal spheres as a highly effective photocatalyst for hydrogen production, Int. J. Hydrogen Energ. 41(2016) 17225-17232.
DOI: 10.1016/j.ijhydene.2016.07.139
Google Scholar
[14]
ZHU Y, FANG Y, MAN Y, et al. Preparation and performances of nanosized Ta2O5 powder photocatalyst, J. Solid State Chem. 178(2005) 224-229.
DOI: 10.1016/j.jssc.2004.11.015
Google Scholar
[15]
LIU Y, ZENG W, MA Y, et al. Oxygen-defects modified amorphous Ta2O5 nanoparticles for solar driven hydrogen evolution, Ceram. Int. 47(2021) 4702- 4706.
DOI: 10.1016/j.ceramint.2020.10.038
Google Scholar
[16]
ISMAIL A A, FAISAL M, HARRAZ F A, et al. Synthesis of mesoporous sulfur-doped Ta2O5 nanocomposites and their photocatalytic activities, J. Colloid Interf. Sci. 471(2016)145-154.
DOI: 10.1016/j.jcis.2016.03.019
Google Scholar
[17]
PAN Y, LIU Y, ZENG G, et al. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system, Chem. Commun. 47(2011) 2071-2073.
DOI: 10.1039/c0cc05002d
Google Scholar
[18]
DU S H, LIU Y G, KONG L Y, et al. Seeded secondary growth synthesis of ZIF-8 Membranes supported on α–Al2O3 ceramic tubes, J. Inorg. Mater. 27(2012) 1105-1108.
DOI: 10.3724/sp.j.1077.2012.11739
Google Scholar
[19]
QIAN J, SUN F, QIN L. Hydrothermal synthesis of zeolitic imidazolate framework-67 nanocrystals, Mater. Lett. 82(2012) 220-223.
DOI: 10.1016/j.matlet.2012.05.077
Google Scholar
[20]
BABAEI T, ZAREI M, HOSSEINI M G, et al. Electrochemical advanced oxidation process of Phenazopyridine drug waste using different Ti-based IrO2-Ta2O5 anodes, J. Taiwan Inst. Chem. E. 117(2020) 103-111.
DOI: 10.1016/j.jtice.2020.12.004
Google Scholar
[21]
AN L, HAN X, LI Y, et al. One step synthesis of self-doped F-Ta2O5 nanoshuttles photocatalyst and enhanced photocatalytic hydrogen evolution, Int. J. Hydrogen Energ. 46(2021) 3996-4006.
DOI: 10.1016/j.ijhydene.2020.10.250
Google Scholar
[22]
MANUKUMAR K N, KISHORE B, MANJUNATH K, et al. Mesoporous Ta2O5 nanoparticles as an anode material for lithium ion battery and an efficient photocatalyst for hydrogen evolution, Int. J. Hydrogen Energ. 43(2018) 8125-8135.
DOI: 10.1016/j.ijhydene.2018.08.075
Google Scholar
[23]
HONG Y, FANG Z, YIN B, et al. A visible-light-driven heterojunction for enhanced photocatalytic water splitting over Ta2O5 modified g-C3N4 photocatalyst, Int. J. Hydrogen Energ. 42(2016):6738-6745.
DOI: 10.1016/j.ijhydene.2016.12.055
Google Scholar
[24]
A S W, A Y S, B Y R, et al. A novel Z-scheme Er3+:YAlO3/Ta2O5-CaIn2S4/MoSe2-reduced graphene oxide photocatalyst with superior photocatalytic hydrogen evolution activity, Renew. Energ. 111(2017) 628-637.
DOI: 10.1016/j.renene.2017.04.022
Google Scholar
[25]
SHI, XIAO MIN, MA, et al. N-doping Ta2O5 nanoflowers with strong adsorption and visible light photocatalytic activity for efficient removal of methylene blue, J. Photoch. Photobio. A. 332(2017) 487-496.
DOI: 10.1016/j.jphotochem.2016.09.014
Google Scholar
[26]
YU X, ZHAO J, HUANG J, et al. Visible light photocatalysis of amorphous Cl-Ta2O5-x microspheres for stabilized hydrogen generation, J. Colloid Interf. Sci. 572(2020) 141-150.
DOI: 10.1016/j.jcis.2020.03.030
Google Scholar