Preparation and Photo-Catalytic Performance of ZIF-67@F-Ta2O5 Hetero-Structure

Article Preview

Abstract:

ZIF-67@Ta2O5 graded hetero-structure material was designed and prepared using F-Ta2O5 as a raw material and Zeolite imidazole ester(ZIF-67) as framework structure material. The hetero-structure Ta2O5 and ZIF-67@Ta2O5 were annealing 6 hours at 900°C in nitrogen ambience. The photolysis properties of the Ta2O5 and ZIF-67@Ta2O5 materials as catalysts for photocatalytic decomposition of water to hydrogen were characterized. The results show that the heterogeneous composite structure formed by cobalt-tantalum oxide and tantalum pentoxide can significantly improve the hydrogen production performance of tantalum pentoxide samples, and the properties of samples obtained under nitrogen atmosphere are better. Among them, the N-50 sample (F-Ta2O5 is 50mg, Cobalt nitrate dosage is 6ml, annealing 6 hours at 900°C in nitrogen ambience) has the best hydrogen production performance, and the hydrogen production rate is 116μmol/g/h.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-103

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] KOHLSDORF A, TAFFA D H, WARK M. Microwave assisted synthesis of Ta2O5 nanostructures for photocatalytic hydrogen production, J. Photoch. Photobio. A. 366(2018)41-47.

DOI: 10.1016/j.jphotochem.2018.03.036

Google Scholar

[2] HR A, MGHA B, MMH A. Ta2O5-incorporated in photoinduced electrocatalyst of TiO2-RuO2 decorated by PPy-NrGO nanocomposite for boosting overall water splitting, J. Colloid Interf. Sci. 582(2021) 254-269.

DOI: 10.1016/j.jcis.2020.08.028

Google Scholar

[3] GENG X, XU Y, WANG P, et al. Synthesis of (NH4)2Ta2O3F6 mesocrystals via a hydrothermal route and their conversion to TaO2F and Ta2O5 mesocrystals for photocatalytic dyes degradation, Ceram. Int. 15 (2021) 13865-13873.

DOI: 10.1016/j.ceramint.2021.01.253

Google Scholar

[4] YU, XIN, HU, et al. Defect engineered Ta2O5 nanorod: One-pot synthesis, visible-light driven hydrogen generation and mechanism, Appl. Catal. B-Environ. 217(2017) 48 -56.

DOI: 10.1016/j.apcatb.2017.05.024

Google Scholar

[5] JIANG H, ZHANG W, ZANG S, et al. Rh nanospheres anchored TaON@Ta2O5 nanophotocatalyst for efficient hydrogen evolution from photocatalytic water splitting under visible light irradiation, Int. J. Hydrogen Energ. 44(2019) 24218-24227.

DOI: 10.1016/j.ijhydene.2019.07.166

Google Scholar

[6] TANG Y, HUANG J, LIU S, et al. Surface engineering induced superstructure Ta2O5-x mesocrystals for enhanced visible light photocatalytic antibiotic degradation, J. Colloid Interf. Sci. 596(2021):468-478.

DOI: 10.1016/j.jcis.2021.03.118

Google Scholar

[7] MMA B, NB C, Lr A, et al. A novel two-step route for synthesizing pure Ta2O5 nanoparticles with enhanced photocatalytic activity, Ceram. Int. 45(2019) 6268- 6274.

DOI: 10.1016/j.ceramint.2018.12.108

Google Scholar

[8] YU X, LIU G, LI W, et al. Mesocrystalline Ta2O5 nanosheets supported Pd Pt nanoparticles for efficient photocatalytic hydrogen production, Int. J. Hydrogen Energ. 43(2018) 8232-8242.

DOI: 10.1016/j.ijhydene.2018.03.112

Google Scholar

[9] LI J, DAI W, WU G, et al. Fabrication of Ta2O5 Films on Tantalum Substrate for Efficient Photocatalysis, Catal. Commun. 65(2015) 24-29.

DOI: 10.1016/j.catcom.2015.02.006

Google Scholar

[10] WANG, Chun Q, SIYI, et al. Highly efficient visible-light driven photocatalytic hydrogen evolution over Er3+:YAIO(3)/Ta2O5/rGO/MoSe2 nanocomposite, J. Mol. Liq. 260 (2018) 375-385.

DOI: 10.1016/j.molliq.2018.03.110

Google Scholar

[11] DUAN J, SHI W, XU L, et al. Hierarchical nanostructures of fluorinated and naked Ta2O5 single crystalline nano-rods: hydrothermal preparation, formation mechanism and photocatalytic activity for H2 production, Chem. Commun. 48(2012) 7301-7303.

DOI: 10.1039/c2cc33211f

Google Scholar

[12] ZHAO S H, YANG Z B, ZHAO X M, et al. Green preparation and supercapacitive performance of NiCo2S4@ACF heterogeneous electrode materials, J. Inorg. Mater. 34(2019) 130-136.

Google Scholar

[13] YU H, SUN D, LIU J, et al. Monodisperse mesoporous Ta2O5 colloidal spheres as a highly effective photocatalyst for hydrogen production, Int. J. Hydrogen Energ. 41(2016) 17225-17232.

DOI: 10.1016/j.ijhydene.2016.07.139

Google Scholar

[14] ZHU Y, FANG Y, MAN Y, et al. Preparation and performances of nanosized Ta2O5 powder photocatalyst, J. Solid State Chem. 178(2005) 224-229.

DOI: 10.1016/j.jssc.2004.11.015

Google Scholar

[15] LIU Y, ZENG W, MA Y, et al. Oxygen-defects modified amorphous Ta2O5 nanoparticles for solar driven hydrogen evolution, Ceram. Int. 47(2021) 4702- 4706.

DOI: 10.1016/j.ceramint.2020.10.038

Google Scholar

[16] ISMAIL A A, FAISAL M, HARRAZ F A, et al. Synthesis of mesoporous sulfur-doped Ta2O5 nanocomposites and their photocatalytic activities, J. Colloid Interf. Sci. 471(2016)145-154.

DOI: 10.1016/j.jcis.2016.03.019

Google Scholar

[17] PAN Y, LIU Y, ZENG G, et al. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system, Chem. Commun. 47(2011) 2071-2073.

DOI: 10.1039/c0cc05002d

Google Scholar

[18] DU S H, LIU Y G, KONG L Y, et al. Seeded secondary growth synthesis of ZIF-8 Membranes supported on α–Al2O3 ceramic tubes, J. Inorg. Mater. 27(2012) 1105-1108.

DOI: 10.3724/sp.j.1077.2012.11739

Google Scholar

[19] QIAN J, SUN F, QIN L. Hydrothermal synthesis of zeolitic imidazolate framework-67 nanocrystals, Mater. Lett. 82(2012) 220-223.

DOI: 10.1016/j.matlet.2012.05.077

Google Scholar

[20] BABAEI T, ZAREI M, HOSSEINI M G, et al. Electrochemical advanced oxidation process of Phenazopyridine drug waste using different Ti-based IrO2-Ta2O5 anodes, J. Taiwan Inst. Chem. E. 117(2020) 103-111.

DOI: 10.1016/j.jtice.2020.12.004

Google Scholar

[21] AN L, HAN X, LI Y, et al. One step synthesis of self-doped F-Ta2O5 nanoshuttles photocatalyst and enhanced photocatalytic hydrogen evolution, Int. J. Hydrogen Energ. 46(2021) 3996-4006.

DOI: 10.1016/j.ijhydene.2020.10.250

Google Scholar

[22] MANUKUMAR K N, KISHORE B, MANJUNATH K, et al. Mesoporous Ta2O5 nanoparticles as an anode material for lithium ion battery and an efficient photocatalyst for hydrogen evolution, Int. J. Hydrogen Energ. 43(2018) 8125-8135.

DOI: 10.1016/j.ijhydene.2018.08.075

Google Scholar

[23] HONG Y, FANG Z, YIN B, et al. A visible-light-driven heterojunction for enhanced photocatalytic water splitting over Ta2O5 modified g-C3N4 photocatalyst, Int. J. Hydrogen Energ. 42(2016):6738-6745.

DOI: 10.1016/j.ijhydene.2016.12.055

Google Scholar

[24] A S W, A Y S, B Y R, et al. A novel Z-scheme Er3+:YAlO3/Ta2O5-CaIn2S4/MoSe2-reduced graphene oxide photocatalyst with superior photocatalytic hydrogen evolution activity, Renew. Energ. 111(2017) 628-637.

DOI: 10.1016/j.renene.2017.04.022

Google Scholar

[25] SHI, XIAO MIN, MA, et al. N-doping Ta2O5 nanoflowers with strong adsorption and visible light photocatalytic activity for efficient removal of methylene blue, J. Photoch. Photobio. A. 332(2017) 487-496.

DOI: 10.1016/j.jphotochem.2016.09.014

Google Scholar

[26] YU X, ZHAO J, HUANG J, et al. Visible light photocatalysis of amorphous Cl-Ta2O5-x microspheres for stabilized hydrogen generation, J. Colloid Interf. Sci. 572(2020) 141-150.

DOI: 10.1016/j.jcis.2020.03.030

Google Scholar