Effect of Phosphonium-Based Ionic Liquid Content in Curing Epoxy Resin/Carbon Nanotubes Systems

Article Preview

Abstract:

The effect of varying the content of the ionic liquid based on phosphonium, tributyl (ethyl)-phosphonium diethylphosphate, was studied acting with a dual role as a curing and dispersing agent to obtain multiwalled carbon nanotube nanocomposites (MWCNT) dispersed in epoxy resin (ER). The effect of this ionic liquid in the mixtures was evaluated to obtain a better dispersion of the charge in the epoxy matrix, and consequently the impact on the curing of the nanocomposites. The effectiveness of the dispersion was evaluated morphologically by scanning electron microscopy (SEM). The non-covalent functionalization of nanotube nanocomposites (CNT) with IL resulted in better reinforcing effect and higher conductivity, as well as the use of high-speed speed mixer combined with acetone, culminated in better mixing and processing conditions. Under these conditions, the composite showed high electrical conductivity and good dynamic-mechanical properties. The systems with 10phr of the ionic liquid showed the highest of ΔH (heat of reaction), and these values ​​can be attributed to the better adjustment of the stoichiometry, favoring the crosslinking of the resin. the systems with 10phr of the ionic liquid showed the highest of ΔH (heat of reaction), and these values ​​can be attributed to the better adjustment of the stoichiometry, favoring the crosslinking of the resin. However, the systems prepared with 30phr of ionic liquid showed lower values ​​of ΔH, possibly due to its excess in the mixture, culminating in the imbalance of resin/hardener stoichiometry. This can be seen in the scanning electron microscopy (SEM), whose sample cured with 30phr showed cracks, due to the excess of the crosslinking agent causing incomplete curing, making the material more fragile.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-21

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Ahmed; S. Gul; M. Awais; Z. U. Hassan; S. Jabeen; M. Farooq. A review: novel nanohybrids of epoxy/polyamide with carbon nanotube/nano-diamond. Polymer-Plastics Technology and Materials, Vol. 60(2021), pp.579-600.

DOI: 10.1080/25740881.2020.1819314

Google Scholar

[2] J. Joy; E. George; P. Haritha; S. Thomas; S. Anas. An overview of boron nitride based polymer nanocomposites. Journal of Polymer Science, Vol.58(2020), pp.3115-3141.

DOI: 10.1002/pol.20200507

Google Scholar

[3] Y.-L. Wang; B. Li; S. Sarman; F. Mocci; Z.-Y. Lu; J. Yuan, A. Laaksonen; M. D. Microstructural and Dynamical Heterogeneities in Ionic Liquids. Chem. Rev., Vol. 120(2020), p.5798–5877.

DOI: 10.1021/acs.chemrev.9b00693

Google Scholar

[4] E. C. L. Pereira; B. G. Soares; A. A. Silva; J. M. F. da Silva; G. M. O. Barra; S. Livi. Conductive heterogeneous blend composites of PP/PA12 filled with ionic liquids treated-CNT. Polymer Testing, Vol.74(2019), pp.187-195.

DOI: 10.1016/j.polymertesting.2019.01.003

Google Scholar

[5] Y. Liu; Y. Wang; Y. Nie; C. Wang; X. Ji; L. Zhou; F. Pan; S. Zhang. Preparation of MWCNTs-Graphene-Cellulose Fiber with Ionic Liquids. ACS Sustainable Chem. Eng., Vol.7(2019), p.20013–20021.

DOI: 10.1021/acssuschemeng.9b05489

Google Scholar

[6] M. Matandabuzo; P. A. Ajibade. Synthesis and surface functionalization of multi-walled carbon nanotubes with imidazolium and pyridinium-based ionic liquids: Thermal stability, dispersibility and hydrophobicity characteristics. Journal of Molecular Liquids, Vol. 268(2018), pp.284-293.

DOI: 10.1016/j.molliq.2018.07.028

Google Scholar

[7] K. Ahmed; M. Kawakami; A. Khosla; H. Furukawa. Soft, conductive nanocomposites based on ionic liquids/carbon nanotubes for 3D printing of flexible electronic devices. Polymer Journal, Vol. 59(2019), p.511–521.

DOI: 10.1038/s41428-018-0166-z

Google Scholar

[8] B. G. Soares; F. F. Alves. Nanostructured epoxy-rubber network modified with MWCNT and ionic liquid: electrical, dynamic-mechanical and adhesion properties. Polymer Composites, Vol. 39(2018), p.E2584-E2594.

DOI: 10.1002/pc.24852

Google Scholar

[9] B. G. Soares. Ionic liquid: a smart approach for developing conducting Polymer composites. Journal of Molecular Liquids, Vol. 262(2018), pp.8-18.

DOI: 10.1016/j.molliq.2018.04.049

Google Scholar

[10] V. Bugatti; G. Viscusi; A. D. Bartolomeo; L. Iemmo; D. C. Zampino; V. Vittoria; G Gorrasi. Ionic Liquid as Dispersing Agent of LDH-Carbon Nanotubes into a Biodegradable Vinyl Alcohol Polymer. Polymers, Vol.12(2020), p.495.

DOI: 10.3390/polym12020495

Google Scholar

[11] X. Zenga; X. Zheng; L. Guo; Q. Xu; H. Huang; B. Tan. Three imidazole ionic liquids as green and eco-friendly corrosion inhibitors for mild steel in sulfuric acid medium. Journal of Molecular Liquids, Vol.324(2021), p.115063.

DOI: 10.1016/j.molliq.2020.115063

Google Scholar

[12] W. Han; G. Zhoua; M. Xinga; Y. Yanga; X. Zhanga; Y. Miaoa; Y. Wanga. Experimental investigation on physicochemical characteristics of coal treated with synthetic sodium salicylate–imidazole ionic liquids. Journal of Molecular Liquids, Vol.327(2021), p.114822.

DOI: 10.1016/j.molliq.2020.114822

Google Scholar

[13] N. Guanhua; W. Hui; N. Baisheng; W. Yan; D. Haoran; L. Shouqing; W. Gang. Research of wetting selectivity and wetting effect of imidazole ionic liquids on coal. Fuel, Vol.286(2021), p.119331.

DOI: 10.1016/j.fuel.2020.119331

Google Scholar

[14] Y. Wan; Y. Wang; X. Yang; W. Bai; J. Zhang; X. Zhou; X. Guo; J. Peng; J. Qi; Z. Zhu. Screening of Imidazole Ionic Liquids for Separating the Acetone–n-Hexane Azeotrope by COSMO-SAC Simulations and Experimental Verification. Fuel ACS Sustainable Chem. Eng., Vol.8(2020), p.4440–4450.

DOI: 10.1021/acssuschemeng.9b07358

Google Scholar

[15] J. A. Cerecedo-Cordoba; J. J. G. Barbosa; J. F. Soís; N. V. Gallardo-Rivas. Melting Temperature Estimation of Imidazole Ionic Liquids with Clustering Methods. J. Chem. Inf. Model, Vol.24659(2019), p.3144–3153.

DOI: 10.1021/acs.jcim.9b00203

Google Scholar

[16] F. C. Binks; G. Cavalli; M. Henningsen; B. J. Howlin; I. Hamerton. Examining the effects of storage on the initiation behavior of ionic liquids towards the cure of epoxy resins. React Funct. Polymer, Vol. 11(2018), pp.657-675.

DOI: 10.1016/j.reactfunctpolym.2018.09.017

Google Scholar

[17] B. Li; R. Guo; J. Tian; Z. Wang; R. Qu. Individual dispersion of carbon nanotubes in epoxy via a novel dispersion-curing approach using ionic liquid New Findings of Ferrate(VI) Oxidation Mechanism from Its Degradation of Alkene Imidazole Ionic Liquids. Phy Environ. Sci. Technol., Vol. 55(2021) p.11733–11744.

DOI: 10.1021/acs.est.1c03348

Google Scholar

[18] F. Lauck; J. Balkenhohl; M. Negri; D. Freudenmann; S. Schlechtriem. Green bipropellant development – A study on the hypergolicity of imidazole thiocyanate ionic liquids with hydrogen peroxide in an automated drop test setup. Combustion and Flame, Vol.226(2021), pp.87-97.

DOI: 10.1016/j.combustflame.2020.11.033

Google Scholar

[19] A. Bhattacharjee; J. A. L. da Silva; M. G. Freirea; J. A. P. Coutinho; P. J. Carvalho. Thermophysical properties of phosphonium-based ionic liquids. Fluid Phase Equilibria, Vol.400(2015), pp.103-113.

DOI: 10.1016/j.fluid.2015.05.009

Google Scholar

[20] M. Chen; B. T. White; C. R. Kasprzak; T. E. Long. Nanostructured thermosets from ionic liquid building block-epoxy prepolymer mixtureAdvances in phosphonium-based ionic liquids and poly(ionic liquid)s as conductive materials. European Polymer Journal, Vol. 108(2018), pp.28-37.

DOI: 10.1016/j.eurpolymj.2018.08.015

Google Scholar

[21] S. Khazalpour; M. Yarie; E. Kianpour; A. Amani; S. Asadabadi; J. Y. Seyf; M. Rezaeivala; S. Azizian; M. A. Zolfigol. Applications of phosphonium-based ionic liquids in chemical processes. Journal of the Iranian Chemical Society, Vol. 17(2020), p.1775–(1917).

DOI: 10.1007/s13738-020-01901-6

Google Scholar

[22] Dr. L. Macarie; Dr. V. Simulescu; Dr. G. Ilia. Phosphonium-Based Ionic Liquids Used as Reagents or Catalysts. Chemistry Select, Vol.4(2019), pp.9285-929723.

DOI: 10.1002/slct.201901712

Google Scholar

[23] E. Skoronskia; M. Fernandesa; F. J. Malaret; J. P. Hallett. Use of phosphonium ionic liquids for highly efficient extraction of phenolic compounds from water. Separation and Purification Technology, Vol. 248(2020), p.117069.

DOI: 10.1016/j.seppur.2020.117069

Google Scholar

[24] K. K. Thasneema; M. S. Thayyil; T. Rosalin; K. K. Elyas; T. Dipin; P. K.Sahu; N. S. Krish; K. V. C. Saheerf; M. Messali; T. B. Haddah. Thermal and spectroscopic investigations on three phosphonium based ionic liquids for industrial and biological applications. Journal of Molecular Liquids, Vol. 307(2020), p.112960.

DOI: 10.1016/j.molliq.2020.112960

Google Scholar

[25] H. Mohammed; A. Al-Othman; P. Nancarrow; Y. Elsayed; M. Tawalbeh. Enhanced proton conduction in zirconium phosphate/ionic liquids materials for high-temperature fuel cells. International Journal of Hydrogen Energy, Vol.46(2021), pp.4857-4869.

DOI: 10.1016/j.ijhydene.2019.09.118

Google Scholar

[26] Z. Xie; Y. Mai; X. Zhou. Dispersion and alignment of carbono nanotubes in Polymer matrix: A review. Materials Science and Engineering, Vol.49(2005), p.89.

DOI: 10.1016/j.mser.2005.04.002

Google Scholar

[27] D. Ratna. Handbook of Thermoset Resins, Smithers Rapra, Shawbury, UK, (2009).

Google Scholar

[28] M. R. Saeb; E. Bakhshandeh; H. A. Khonakdar, E. Mäder; C. Scheffler; G. Heinrich. Cure Kinetics of Epoxy Nanocomposites Affected by MWCNTs Functionalization: A Review. The Scientific World Journal, pp.1-14, (2013).

DOI: 10.1155/2013/703708

Google Scholar

[29] B. Chen; J. Shen; X. Ye; L. Ji; S. Li; J. Umeda; M. Takahashi; K. Kondoh. Length effect of carbon nanotubes on the strengthening mechanisms in metal matrix composites. Acta Materialia, Vol. 140(2017), pp.317-325.

DOI: 10.1016/j.actamat.2017.08.048

Google Scholar

[30] F. F. Alves; A. A. Silva; B. G. Soares. Epoxy-MWCNT composites prepared from máster batch and powder dilution: effect of ionic liquid on dispersion and multifunctional properties. Polymer Engineerig Sciences, Vol.58(2018), pp.1689-1697.

DOI: 10.1002/pen.24759

Google Scholar

[31] N. H. Ismail; John O. Akindoyo; M. Mariatti. Solvent mediated dispersion of carbon nanotubes for glass fibre surface modification – Suspensions stability and its effects on mechanical, interlaminar and dynamic mechanical properties of modified glass fibre reinforced epoxy laminates. Composites Part A: Applied Science and Manufacturing, Vol. 139(2020), p.106091.

DOI: 10.1016/j.compositesa.2020.106091

Google Scholar

[32] C. V. Opelt; K. Concei; L. A. F. Coelho. Tenacidade à fratura de resina epóxi DGEBA com incorporação de copolímero em bloco (PEO-PPO-PEO) e Grafeno", In: Congresso Brasileiro de Engenharia e Ciência dos Materiais Cuiabá, MT, Brasil, p.7684–7691, (2014).

DOI: 10.5151/chemeng-cobeq2014-0220-26477-172505

Google Scholar

[33] M. R. Loos. The matrix stiffness role on tensile and termal properties of carbon nanotubes/epoxy composites. Journal of Materials Science, Vol.43(2008), pp.6064-6092.

Google Scholar