[1]
W. Ahmed; S. Gul; M. Awais; Z. U. Hassan; S. Jabeen; M. Farooq. A review: novel nanohybrids of epoxy/polyamide with carbon nanotube/nano-diamond. Polymer-Plastics Technology and Materials, Vol. 60(2021), pp.579-600.
DOI: 10.1080/25740881.2020.1819314
Google Scholar
[2]
J. Joy; E. George; P. Haritha; S. Thomas; S. Anas. An overview of boron nitride based polymer nanocomposites. Journal of Polymer Science, Vol.58(2020), pp.3115-3141.
DOI: 10.1002/pol.20200507
Google Scholar
[3]
Y.-L. Wang; B. Li; S. Sarman; F. Mocci; Z.-Y. Lu; J. Yuan, A. Laaksonen; M. D. Microstructural and Dynamical Heterogeneities in Ionic Liquids. Chem. Rev., Vol. 120(2020), p.5798–5877.
DOI: 10.1021/acs.chemrev.9b00693
Google Scholar
[4]
E. C. L. Pereira; B. G. Soares; A. A. Silva; J. M. F. da Silva; G. M. O. Barra; S. Livi. Conductive heterogeneous blend composites of PP/PA12 filled with ionic liquids treated-CNT. Polymer Testing, Vol.74(2019), pp.187-195.
DOI: 10.1016/j.polymertesting.2019.01.003
Google Scholar
[5]
Y. Liu; Y. Wang; Y. Nie; C. Wang; X. Ji; L. Zhou; F. Pan; S. Zhang. Preparation of MWCNTs-Graphene-Cellulose Fiber with Ionic Liquids. ACS Sustainable Chem. Eng., Vol.7(2019), p.20013–20021.
DOI: 10.1021/acssuschemeng.9b05489
Google Scholar
[6]
M. Matandabuzo; P. A. Ajibade. Synthesis and surface functionalization of multi-walled carbon nanotubes with imidazolium and pyridinium-based ionic liquids: Thermal stability, dispersibility and hydrophobicity characteristics. Journal of Molecular Liquids, Vol. 268(2018), pp.284-293.
DOI: 10.1016/j.molliq.2018.07.028
Google Scholar
[7]
K. Ahmed; M. Kawakami; A. Khosla; H. Furukawa. Soft, conductive nanocomposites based on ionic liquids/carbon nanotubes for 3D printing of flexible electronic devices. Polymer Journal, Vol. 59(2019), p.511–521.
DOI: 10.1038/s41428-018-0166-z
Google Scholar
[8]
B. G. Soares; F. F. Alves. Nanostructured epoxy-rubber network modified with MWCNT and ionic liquid: electrical, dynamic-mechanical and adhesion properties. Polymer Composites, Vol. 39(2018), p.E2584-E2594.
DOI: 10.1002/pc.24852
Google Scholar
[9]
B. G. Soares. Ionic liquid: a smart approach for developing conducting Polymer composites. Journal of Molecular Liquids, Vol. 262(2018), pp.8-18.
DOI: 10.1016/j.molliq.2018.04.049
Google Scholar
[10]
V. Bugatti; G. Viscusi; A. D. Bartolomeo; L. Iemmo; D. C. Zampino; V. Vittoria; G Gorrasi. Ionic Liquid as Dispersing Agent of LDH-Carbon Nanotubes into a Biodegradable Vinyl Alcohol Polymer. Polymers, Vol.12(2020), p.495.
DOI: 10.3390/polym12020495
Google Scholar
[11]
X. Zenga; X. Zheng; L. Guo; Q. Xu; H. Huang; B. Tan. Three imidazole ionic liquids as green and eco-friendly corrosion inhibitors for mild steel in sulfuric acid medium. Journal of Molecular Liquids, Vol.324(2021), p.115063.
DOI: 10.1016/j.molliq.2020.115063
Google Scholar
[12]
W. Han; G. Zhoua; M. Xinga; Y. Yanga; X. Zhanga; Y. Miaoa; Y. Wanga. Experimental investigation on physicochemical characteristics of coal treated with synthetic sodium salicylate–imidazole ionic liquids. Journal of Molecular Liquids, Vol.327(2021), p.114822.
DOI: 10.1016/j.molliq.2020.114822
Google Scholar
[13]
N. Guanhua; W. Hui; N. Baisheng; W. Yan; D. Haoran; L. Shouqing; W. Gang. Research of wetting selectivity and wetting effect of imidazole ionic liquids on coal. Fuel, Vol.286(2021), p.119331.
DOI: 10.1016/j.fuel.2020.119331
Google Scholar
[14]
Y. Wan; Y. Wang; X. Yang; W. Bai; J. Zhang; X. Zhou; X. Guo; J. Peng; J. Qi; Z. Zhu. Screening of Imidazole Ionic Liquids for Separating the Acetone–n-Hexane Azeotrope by COSMO-SAC Simulations and Experimental Verification. Fuel ACS Sustainable Chem. Eng., Vol.8(2020), p.4440–4450.
DOI: 10.1021/acssuschemeng.9b07358
Google Scholar
[15]
J. A. Cerecedo-Cordoba; J. J. G. Barbosa; J. F. Soís; N. V. Gallardo-Rivas. Melting Temperature Estimation of Imidazole Ionic Liquids with Clustering Methods. J. Chem. Inf. Model, Vol.24659(2019), p.3144–3153.
DOI: 10.1021/acs.jcim.9b00203
Google Scholar
[16]
F. C. Binks; G. Cavalli; M. Henningsen; B. J. Howlin; I. Hamerton. Examining the effects of storage on the initiation behavior of ionic liquids towards the cure of epoxy resins. React Funct. Polymer, Vol. 11(2018), pp.657-675.
DOI: 10.1016/j.reactfunctpolym.2018.09.017
Google Scholar
[17]
B. Li; R. Guo; J. Tian; Z. Wang; R. Qu. Individual dispersion of carbon nanotubes in epoxy via a novel dispersion-curing approach using ionic liquid New Findings of Ferrate(VI) Oxidation Mechanism from Its Degradation of Alkene Imidazole Ionic Liquids. Phy Environ. Sci. Technol., Vol. 55(2021) p.11733–11744.
DOI: 10.1021/acs.est.1c03348
Google Scholar
[18]
F. Lauck; J. Balkenhohl; M. Negri; D. Freudenmann; S. Schlechtriem. Green bipropellant development – A study on the hypergolicity of imidazole thiocyanate ionic liquids with hydrogen peroxide in an automated drop test setup. Combustion and Flame, Vol.226(2021), pp.87-97.
DOI: 10.1016/j.combustflame.2020.11.033
Google Scholar
[19]
A. Bhattacharjee; J. A. L. da Silva; M. G. Freirea; J. A. P. Coutinho; P. J. Carvalho. Thermophysical properties of phosphonium-based ionic liquids. Fluid Phase Equilibria, Vol.400(2015), pp.103-113.
DOI: 10.1016/j.fluid.2015.05.009
Google Scholar
[20]
M. Chen; B. T. White; C. R. Kasprzak; T. E. Long. Nanostructured thermosets from ionic liquid building block-epoxy prepolymer mixtureAdvances in phosphonium-based ionic liquids and poly(ionic liquid)s as conductive materials. European Polymer Journal, Vol. 108(2018), pp.28-37.
DOI: 10.1016/j.eurpolymj.2018.08.015
Google Scholar
[21]
S. Khazalpour; M. Yarie; E. Kianpour; A. Amani; S. Asadabadi; J. Y. Seyf; M. Rezaeivala; S. Azizian; M. A. Zolfigol. Applications of phosphonium-based ionic liquids in chemical processes. Journal of the Iranian Chemical Society, Vol. 17(2020), p.1775–(1917).
DOI: 10.1007/s13738-020-01901-6
Google Scholar
[22]
Dr. L. Macarie; Dr. V. Simulescu; Dr. G. Ilia. Phosphonium-Based Ionic Liquids Used as Reagents or Catalysts. Chemistry Select, Vol.4(2019), pp.9285-929723.
DOI: 10.1002/slct.201901712
Google Scholar
[23]
E. Skoronskia; M. Fernandesa; F. J. Malaret; J. P. Hallett. Use of phosphonium ionic liquids for highly efficient extraction of phenolic compounds from water. Separation and Purification Technology, Vol. 248(2020), p.117069.
DOI: 10.1016/j.seppur.2020.117069
Google Scholar
[24]
K. K. Thasneema; M. S. Thayyil; T. Rosalin; K. K. Elyas; T. Dipin; P. K.Sahu; N. S. Krish; K. V. C. Saheerf; M. Messali; T. B. Haddah. Thermal and spectroscopic investigations on three phosphonium based ionic liquids for industrial and biological applications. Journal of Molecular Liquids, Vol. 307(2020), p.112960.
DOI: 10.1016/j.molliq.2020.112960
Google Scholar
[25]
H. Mohammed; A. Al-Othman; P. Nancarrow; Y. Elsayed; M. Tawalbeh. Enhanced proton conduction in zirconium phosphate/ionic liquids materials for high-temperature fuel cells. International Journal of Hydrogen Energy, Vol.46(2021), pp.4857-4869.
DOI: 10.1016/j.ijhydene.2019.09.118
Google Scholar
[26]
Z. Xie; Y. Mai; X. Zhou. Dispersion and alignment of carbono nanotubes in Polymer matrix: A review. Materials Science and Engineering, Vol.49(2005), p.89.
DOI: 10.1016/j.mser.2005.04.002
Google Scholar
[27]
D. Ratna. Handbook of Thermoset Resins, Smithers Rapra, Shawbury, UK, (2009).
Google Scholar
[28]
M. R. Saeb; E. Bakhshandeh; H. A. Khonakdar, E. Mäder; C. Scheffler; G. Heinrich. Cure Kinetics of Epoxy Nanocomposites Affected by MWCNTs Functionalization: A Review. The Scientific World Journal, pp.1-14, (2013).
DOI: 10.1155/2013/703708
Google Scholar
[29]
B. Chen; J. Shen; X. Ye; L. Ji; S. Li; J. Umeda; M. Takahashi; K. Kondoh. Length effect of carbon nanotubes on the strengthening mechanisms in metal matrix composites. Acta Materialia, Vol. 140(2017), pp.317-325.
DOI: 10.1016/j.actamat.2017.08.048
Google Scholar
[30]
F. F. Alves; A. A. Silva; B. G. Soares. Epoxy-MWCNT composites prepared from máster batch and powder dilution: effect of ionic liquid on dispersion and multifunctional properties. Polymer Engineerig Sciences, Vol.58(2018), pp.1689-1697.
DOI: 10.1002/pen.24759
Google Scholar
[31]
N. H. Ismail; John O. Akindoyo; M. Mariatti. Solvent mediated dispersion of carbon nanotubes for glass fibre surface modification – Suspensions stability and its effects on mechanical, interlaminar and dynamic mechanical properties of modified glass fibre reinforced epoxy laminates. Composites Part A: Applied Science and Manufacturing, Vol. 139(2020), p.106091.
DOI: 10.1016/j.compositesa.2020.106091
Google Scholar
[32]
C. V. Opelt; K. Concei; L. A. F. Coelho. Tenacidade à fratura de resina epóxi DGEBA com incorporação de copolímero em bloco (PEO-PPO-PEO) e Grafeno", In: Congresso Brasileiro de Engenharia e Ciência dos Materiais Cuiabá, MT, Brasil, p.7684–7691, (2014).
DOI: 10.5151/chemeng-cobeq2014-0220-26477-172505
Google Scholar
[33]
M. R. Loos. The matrix stiffness role on tensile and termal properties of carbon nanotubes/epoxy composites. Journal of Materials Science, Vol.43(2008), pp.6064-6092.
Google Scholar