[1]
L. Pera, L., B. Gebhart, The Nature of Vertical Natural Convection Flows Resulting from the Combined Buoyancy Effects of Thermal and Mass Diffusion. Int. J. Heat Mass Transf., 15 (1971) 269-278.
DOI: 10.1016/0017-9310(71)90026-3
Google Scholar
[2]
V.M. Soundalgekar, P. Ganesan, Finite-Difference Analysis of Transient Free Convection with Mass Transfer on an Isothermal Vertical Flat Plate. Int. J. Eng. Sci., 19 (1981) 757-770.
DOI: 10.1016/0020-7225(81)90109-9
Google Scholar
[3]
A. Umemura, C.K Law, Natural Convection Boundary Layer Flow over a Heated plate with Arbitrary Inclination. J.Fluid. Mech., 219 (1990) 571-584.
DOI: 10.1017/s0022112090003081
Google Scholar
[4]
A.J Chamkha, A.A Khaled, Similarity solutions for hydromagnetic simultaneous heat and mass transfer by natural convection from an inclined plate with internal heat generation or absorption. Heat Mass Transfer., 37(2) (2001) 117-123.
DOI: 10.1007/s002310000131
Google Scholar
[5]
M.G Reddy, N.B Reddy, Finite element analysis of soret and dufour effects on unsteady MHD free convection flow past an impulsively started vertical porous plate with viscous dissipation. J. Nav. Archit. Mar. Eng., 8 (2011) 1-12.
DOI: 10.3329/jname.v8i1.3507
Google Scholar
[6]
M.S Alam, M. M Rahman, M.A Sattar, Similarity Solutions for Hydromagnetic Free Convective Heat and Mass Transfer flow along a Semi-Infinite Permeable Inclined Flat Plate with Heat Generation and Thermophoresis. Nonlinear Anal.: Model. Control., 12 (2007) 433-445.
DOI: 10.15388/na.2007.12.4.14675
Google Scholar
[7]
V. Rajesh, S.V.K Varma, Chemical Reaction and Radiation Effects on MHD Flow Past an Infinite Vertical Plate with Variable Temperature. Far East J. Appl. Math., 32 (2009) 87-106.
Google Scholar
[8]
V. Rajesh, S.V.K Varma, Radiation and mass transfer effects on MHD free convection flow past an exponentially accelerated vertical plate with variable temperature. J. Eng. Appl. Sci., 4 (2009) 20-26.
DOI: 10.3329/jname.v7i2.4370
Google Scholar
[9]
D. Sarma, N. Ahmed, N., H. Deka, MHD Free Convection and Mass Transfer Flow past an Accelerated Vertical Plate with Chemical Reaction in Presence of Radiation. Lat. Am. Appl. Res., 44 (2014) 1-8.
DOI: 10.52292/j.laar.2014.412
Google Scholar
[10]
A.J Chamkha, A.R.A Khaled, Non similar hydromagnetic simultaneous heat and mass transfer by mixed convection from a vertical plate embedded in a uniform porous medium. Numer. Heat Transf.; A: Appl., 36 (1999) 327-344.
DOI: 10.1080/104077899274796
Google Scholar
[11]
S.M Ibrahim, N.B Reddy, Radiation and mass transfer effects on MHD free convection flow along a stretching surface with viscous dissipation and heat generation. Int. J. Appl. Math. Mech., 8 (2012) 1-21.
Google Scholar
[12]
P.K Singh, Heat and Mass Transfer in MHD Boundary Layer Flow past an Inclined Plate with Viscous Dissipation in Porous Medium. Int. j. sci. eng., 3 (2012) 2229-5518.
DOI: 10.18034/ei.v2i1.130
Google Scholar
[13]
L.E Ali, A. Islam, N. Islam, Investigate Micropolar Fluid Behavior on MHD Free Convection and Mass Transfer with Constant Heat and Mass Fluxes by Finite Difference Method. Am. J. Appl. Math., 3 (2015) 157-168.
DOI: 10.11648/j.ajam.20150303.23
Google Scholar
[14]
M. Islam, F. Akter, A. Islam, Mass Transfer Flow through an Inclined Plate with Porous Medium. Am. J. Appl. Math., 3 (2015) 215-220.
DOI: 10.11648/j.ajam.20150305.12
Google Scholar
[15]
S.U.S Choi, J.A Eastman, Enhancing thermal conductivity of fluids with nanoparticles. In Proc. ASME Int. Mech. Eng. Congress and Exposition, 66 (1995).
Google Scholar
[16]
J. Buongiorno, Convective transport in nanofluids. ASME J. Heat Transf., 128 (2006) 240–250.
Google Scholar
[17]
A.V Kuznetsov, D.A Nield, Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int. J. Therm. Sci., 49 (2010) 243–247.
DOI: 10.1016/j.ijthermalsci.2009.07.015
Google Scholar
[18]
D.A Nield, A.V Kuznetsov, The Cheng-Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid. Int. J. Heat Mass Transf., 52 (2009) 5792–5795.
DOI: 10.1016/j.ijheatmasstransfer.2009.07.024
Google Scholar
[19]
W.A Khan, A. Aziz, Natural convection flow of a nanofluid over a vertical plate with uniform surface heat flux. Int. J. Therm. Sci., 50 (2011) 1207-1214.
DOI: 10.1016/j.ijthermalsci.2011.02.015
Google Scholar
[20]
W.A Khan, I. Pop, Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transf., 53 (2010) 2477–2483.
DOI: 10.1016/j.ijheatmasstransfer.2010.01.032
Google Scholar
[21]
O.D Makinde, A. Aziz, A., Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int. J. Ther. Sci., 50 (2011) 1326–1332.
DOI: 10.1016/j.ijthermalsci.2011.02.019
Google Scholar
[22]
S. Das, R.N Jana, O.D Makinde, Transient natural convection in a vertical channel filled with nanofluids in the presence of thermal radiation. Alex. Eng. J., 55 (2016) 253–262.
DOI: 10.1016/j.aej.2015.10.013
Google Scholar
[23]
M. Sheikholeslami, H.B Rokni, Numerical simulation for impact of on nanofluid heat transfer in a porous in presence of thermal radiation. Int. J. Heat Mass Transf., 118 (2018) 823–831.
DOI: 10.1016/j.ijheatmasstransfer.2017.11.041
Google Scholar
[24]
M. Turkyilmazoglu, MHD natural convection in saturated porous media with heat generation/absorption and thermal radiation: closed-form solutions. Arch. Mech., 71 (2019) 49-64.
Google Scholar
[25]
M. Turkyilmazoglu, On the transparent effects of Buongiorno nanofluid model on heat and mass transfer. Eur. Phys. J. Plus, 136 (2021) 1-15.
DOI: 10.1140/epjp/s13360-021-01359-2
Google Scholar
[26]
T.M.T Hayat, S.A Shehzad, M.S Alhuthali, J. Lu, Impact of magnetic field in three-dimensional flow of an Oldroyd-B nanofluid. J. Mol. Liq., 212 (2015) 272–282.
DOI: 10.1016/j.molliq.2015.09.023
Google Scholar
[27]
A. Wakif, A.J Chamkha, T. Thumma, I.L Animasaun, R. Sehaqui, Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina–copper oxide hybrid nanofluids utilizing the generalized Buongiorno's nanofluid model. J. Ther. Anal. Calor., 143 (2020) 1201–1220.
DOI: 10.1007/s10973-020-09488-z
Google Scholar
[28]
M. Turkyilmazoglu, Flow and heat over a rotating disk subject to an uniform horizontal magnetic field. Z. für Naturforschung, (2022) A.
DOI: 10.1515/zna-2021-0350
Google Scholar
[29]
T.S Chen, H.C Tien, B.F Armaly, Natural convection on horizontal, inclined, and vertical plates with variable surface temperature or heat flux. Int. J. Heat Mass Transf. 29 (1986) 1465-1478.
DOI: 10.1016/0017-9310(86)90061-x
Google Scholar
[30]
E.M Sparrow, H.S Yu, Local non-similarity thermal boundary-layer solutions. J. Heat Transf., (1971) 328-334.
DOI: 10.1115/1.3449827
Google Scholar
[31]
A.V Kuznetsov, D.A Nield, Natural convective boundary-layer flow of a nanofluid past a vertical plate: A revised model, Int. J. Therm. Sci., 77 (2014) 126-129.
DOI: 10.1016/j.ijthermalsci.2013.10.007
Google Scholar
[32]
A.M Bouaziz, M.N Bouaziz, A. Aziz, Influences of zero mass flux and active conditions on the predictions of double dispersion and double diffusive boundary layer in Darcy/non Darcy nanofluid flow. Int. J. Eng. Res., 57 (2021) 49-66.
DOI: 10.4028/www.scientific.net/jera.57.49
Google Scholar