Heat Transfer under Magnetohydrodynamics Flow of Nanofluids Past an Inclined Plate with Non Uniform Boundary Conditions

Article Preview

Abstract:

This paper deals with natural thermal convection combined with the mass transfer of nanoparticles occurring in the boundary layers of a nanofluid subjected to magnetohydrodynamics. The wall consists of an inclined plate is considered according to a temperature as well as the volume fraction of the nanoparticles varying as the power of the axial coordinate. In addition, internal heat generation/absorption is taken into account in the mathematical formulation. The governing partial differential equations based on Buongiorno's approach are transformed into a set of ordinary differential equations. The two-level method of no-similarity equations is used to achieve higher accuracy. The whole calculation procedure is implemented using a limit value problem program written according to the Matlab computer language that applies the Lobbato IIIa finite difference method. The obtained results have revealed that small variations of the boundary conditions with the axial coordinate become very significant on the local Nusselt number and the local Sherwood number for nanoparticles. Moreover, a better heat transfer has been obtained with a larger S. However, a trade-off between desired heat transfer rate and level of reduced skin friction should be scheduled.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-39

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Pera, L., B. Gebhart, The Nature of Vertical Natural Convection Flows Resulting from the Combined Buoyancy Effects of Thermal and Mass Diffusion. Int. J. Heat Mass Transf., 15 (1971) 269-278.

DOI: 10.1016/0017-9310(71)90026-3

Google Scholar

[2] V.M. Soundalgekar, P. Ganesan, Finite-Difference Analysis of Transient Free Convection with Mass Transfer on an Isothermal Vertical Flat Plate. Int. J. Eng. Sci., 19 (1981) 757-770.

DOI: 10.1016/0020-7225(81)90109-9

Google Scholar

[3] A. Umemura, C.K Law, Natural Convection Boundary Layer Flow over a Heated plate with Arbitrary Inclination. J.Fluid. Mech., 219 (1990) 571-584.

DOI: 10.1017/s0022112090003081

Google Scholar

[4] A.J Chamkha, A.A Khaled, Similarity solutions for hydromagnetic simultaneous heat and mass transfer by natural convection from an inclined plate with internal heat generation or absorption. Heat Mass Transfer., 37(2) (2001) 117-123.

DOI: 10.1007/s002310000131

Google Scholar

[5] M.G Reddy, N.B Reddy, Finite element analysis of soret and dufour effects on unsteady MHD free convection flow past an impulsively started vertical porous plate with viscous dissipation. J. Nav. Archit. Mar. Eng., 8 (2011) 1-12.

DOI: 10.3329/jname.v8i1.3507

Google Scholar

[6] M.S Alam, M. M Rahman, M.A Sattar, Similarity Solutions for Hydromagnetic Free Convective Heat and Mass Transfer flow along a Semi-Infinite Permeable Inclined Flat Plate with Heat Generation and Thermophoresis. Nonlinear Anal.: Model. Control., 12 (2007) 433-445.

DOI: 10.15388/na.2007.12.4.14675

Google Scholar

[7] V. Rajesh, S.V.K Varma, Chemical Reaction and Radiation Effects on MHD Flow Past an Infinite Vertical Plate with Variable Temperature. Far East J. Appl. Math., 32 (2009) 87-106.

Google Scholar

[8] V. Rajesh, S.V.K Varma, Radiation and mass transfer effects on MHD free convection flow past an exponentially accelerated vertical plate with variable temperature.  J. Eng. Appl. Sci., 4 (2009) 20-26.

DOI: 10.3329/jname.v7i2.4370

Google Scholar

[9] D. Sarma, N. Ahmed, N., H. Deka, MHD Free Convection and Mass Transfer Flow past an Accelerated Vertical Plate with Chemical Reaction in Presence of Radiation. Lat. Am. Appl. Res., 44 (2014) 1-8.

DOI: 10.52292/j.laar.2014.412

Google Scholar

[10] A.J Chamkha, A.R.A Khaled, Non similar hydromagnetic simultaneous heat and mass transfer by mixed convection from a vertical plate embedded in a uniform porous medium. Numer. Heat Transf.; A: Appl., 36 (1999) 327-344.

DOI: 10.1080/104077899274796

Google Scholar

[11] S.M Ibrahim, N.B Reddy, Radiation and mass transfer effects on MHD free convection flow along a stretching surface with viscous dissipation and heat generation. Int. J. Appl. Math. Mech., 8 (2012) 1-21.

Google Scholar

[12] P.K Singh, Heat and Mass Transfer in MHD Boundary Layer Flow past an Inclined Plate with Viscous Dissipation in Porous Medium. Int. j. sci. eng., 3 (2012) 2229-5518.

DOI: 10.18034/ei.v2i1.130

Google Scholar

[13] L.E Ali, A. Islam, N. Islam, Investigate Micropolar Fluid Behavior on MHD Free Convection and Mass Transfer with Constant Heat and Mass Fluxes by Finite Difference Method. Am. J. Appl. Math., 3 (2015) 157-168.

DOI: 10.11648/j.ajam.20150303.23

Google Scholar

[14] M. Islam, F. Akter, A. Islam, Mass Transfer Flow through an Inclined Plate with Porous Medium. Am. J. Appl. Math., 3 (2015) 215-220.

DOI: 10.11648/j.ajam.20150305.12

Google Scholar

[15] S.U.S Choi, J.A Eastman, Enhancing thermal conductivity of fluids with nanoparticles. In Proc. ASME Int. Mech. Eng. Congress and Exposition, 66 (1995).

Google Scholar

[16] J. Buongiorno, Convective transport in nanofluids. ASME J. Heat Transf., 128 (2006) 240–250.

Google Scholar

[17] A.V Kuznetsov, D.A Nield, Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int. J. Therm. Sci., 49 (2010) 243–247.

DOI: 10.1016/j.ijthermalsci.2009.07.015

Google Scholar

[18] D.A Nield, A.V Kuznetsov, The Cheng-Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid. Int. J. Heat Mass Transf., 52 (2009) 5792–5795.

DOI: 10.1016/j.ijheatmasstransfer.2009.07.024

Google Scholar

[19] W.A Khan, A. Aziz, Natural convection flow of a nanofluid over a vertical plate with uniform surface heat flux. Int. J. Therm. Sci., 50 (2011) 1207-1214.

DOI: 10.1016/j.ijthermalsci.2011.02.015

Google Scholar

[20] W.A Khan, I. Pop, Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transf., 53 (2010) 2477–2483.

DOI: 10.1016/j.ijheatmasstransfer.2010.01.032

Google Scholar

[21] O.D Makinde, A. Aziz, A., Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int. J. Ther. Sci., 50 (2011) 1326–1332.

DOI: 10.1016/j.ijthermalsci.2011.02.019

Google Scholar

[22] S. Das, R.N Jana, O.D Makinde, Transient natural convection in a vertical channel filled with nanofluids in the presence of thermal radiation. Alex. Eng. J., 55 (2016) 253–262.

DOI: 10.1016/j.aej.2015.10.013

Google Scholar

[23] M. Sheikholeslami, H.B Rokni, Numerical simulation for impact of on nanofluid heat transfer in a porous in presence of thermal radiation. Int. J. Heat Mass Transf., 118 (2018) 823–831.

DOI: 10.1016/j.ijheatmasstransfer.2017.11.041

Google Scholar

[24] M. Turkyilmazoglu, MHD natural convection in saturated porous media with heat generation/absorption and thermal radiation: closed-form solutions. Arch. Mech., 71 (2019) 49-64.

Google Scholar

[25] M. Turkyilmazoglu, On the transparent effects of Buongiorno nanofluid model on heat and mass transfer. Eur. Phys. J. Plus, 136 (2021) 1-15.

DOI: 10.1140/epjp/s13360-021-01359-2

Google Scholar

[26] T.M.T Hayat, S.A Shehzad, M.S Alhuthali, J. Lu, Impact of magnetic field in three-dimensional flow of an Oldroyd-B nanofluid. J. Mol. Liq., 212 (2015) 272–282.

DOI: 10.1016/j.molliq.2015.09.023

Google Scholar

[27] A. Wakif, A.J Chamkha, T. Thumma, I.L Animasaun, R. Sehaqui, Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina–copper oxide hybrid nanofluids utilizing the generalized Buongiorno's nanofluid model. J. Ther. Anal. Calor., 143 (2020) 1201–1220.

DOI: 10.1007/s10973-020-09488-z

Google Scholar

[28] M. Turkyilmazoglu, Flow and heat over a rotating disk subject to an uniform horizontal magnetic field. Z. für Naturforschung, (2022) A.

DOI: 10.1515/zna-2021-0350

Google Scholar

[29] T.S Chen, H.C Tien, B.F Armaly, Natural convection on horizontal, inclined, and vertical plates with variable surface temperature or heat flux. Int. J. Heat Mass Transf. 29 (1986) 1465-1478.

DOI: 10.1016/0017-9310(86)90061-x

Google Scholar

[30] E.M Sparrow, H.S Yu, Local non-similarity thermal boundary-layer solutions. J. Heat Transf., (1971) 328-334.

DOI: 10.1115/1.3449827

Google Scholar

[31] A.V Kuznetsov, D.A Nield, Natural convective boundary-layer flow of a nanofluid past a vertical plate: A revised model, Int. J. Therm. Sci., 77 (2014) 126-129.

DOI: 10.1016/j.ijthermalsci.2013.10.007

Google Scholar

[32] A.M Bouaziz, M.N  Bouaziz, A. Aziz, Influences of zero mass flux and active conditions on the predictions of double dispersion and double diffusive boundary layer in Darcy/non Darcy nanofluid flow. Int. J. Eng. Res., 57 (2021) 49-66.

DOI: 10.4028/www.scientific.net/jera.57.49

Google Scholar