[1]
M. Madrigal, M. Bhatia, G. Elizondo, A. Sarkar, and M. Kojima, Twin peaks: Surmounting the global challenges of energy for all and greener, more efficient electricity services,, IEEE Power and Energy Magazine, vol. 10, no. 3, pp.20-29, (2012).
DOI: 10.1109/mpe.2012.2188666
Google Scholar
[2]
A. S. Aziz et al., A new optimization strategy for wind/diesel/battery hybrid energy system,, Energy, vol. 239, p.122458, (2022).
DOI: 10.1016/j.energy.2021.122458
Google Scholar
[3]
P. A. Gbadega and A. K. Saha, Load Frequency Control of a Two-Area Power System with a Stand-Alone Micro-grid based on Adaptive Model Predictive Control,, IEEE Journal of Emerging and Selected Topics in Power Electronics, (2020).
DOI: 10.1109/jestpe.2020.3012659
Google Scholar
[4]
P. A. Gbadega and K. T. Akindeji, Linear quadratic regulator technique for optimal load frequency controller design of interconnected linear power systems,, in 2020 IEEE PES/IAS PowerAfrica, 2020: IEEE, pp.1-5.
DOI: 10.1109/powerafrica49420.2020.9219887
Google Scholar
[5]
Y. Zheng, B. M. Jenkins, K. Kornbluth, A. Kendall, and C. Træholt, Optimization of a biomass-integrated renewable energy microgrid with demand side management under uncertainty,, Applied Energy, vol. 230, pp.836-844, (2018).
DOI: 10.1016/j.apenergy.2018.09.015
Google Scholar
[6]
A. Yahiaoui, A. Tlemçani, and A. Kouzou, Optimization, Power Management and Reliability Evaluation of Hybrid Wind-PV-Diesel-Battery System for Rural Electrification,, Automation, Control and Intelligent Systems, vol. 9, no. 3, p.73, (2021).
DOI: 10.11648/j.acis.20210903.11
Google Scholar
[7]
D. Fares, M. Fathi, and S. Mekhilef, Performance evaluation of metaheuristic techniques for optimal sizing of a stand-alone hybrid PV/wind/battery system,, Applied Energy, vol. 305, p.117823, (2022).
DOI: 10.1016/j.apenergy.2021.117823
Google Scholar
[8]
A. Parisio, E. Rikos, G. Tzamalis, and L. Glielmo, Use of model predictive control for experimental microgrid optimization,, Applied Energy, vol. 115, pp.37-46, (2014).
DOI: 10.1016/j.apenergy.2013.10.027
Google Scholar
[9]
A. Elnozahy, A. M. Yousef, S. S. Ghoneim, S. A. M. Abdelwahab, M. Mohamed, and F. K. Abo-Elyousr, Optimal Economic and Environmental Indices for Hybrid PV/Wind-Based Battery Storage System,, Journal of Electrical Engineering & Technology, vol. 16, no. 6, pp.2847-2862, (2021).
DOI: 10.1007/s42835-021-00810-9
Google Scholar
[10]
L. Wang, Z. Wang, and R. Yang, Intelligent multiagent control system for energy and comfort management in smart and sustainable buildings,, IEEE transactions on smart grid, vol. 3, no. 2, pp.605-617, (2012).
DOI: 10.1109/tsg.2011.2178044
Google Scholar
[11]
A. Takeuchi, T. Hayashi, Y. Nozaki, and T. Shimakage, Optimal scheduling using metaheuristics for energy networks,, IEEE Transactions on Smart Grid, vol. 3, no. 2, pp.968-974, (2012).
DOI: 10.1109/tsg.2012.2191580
Google Scholar
[12]
L. M. Costa and G. Kariniotakis, A stochastic dynamic programming model for optimal use of local energy resources in a market environment,, in 2007 IEEE Lausanne Power Tech, 2007: IEEE, pp.449-454.
DOI: 10.1109/pct.2007.4538359
Google Scholar
[13]
A. G. Tsikalakis and N. D. Hatziargyriou, Centralized control for optimizing microgrids operation,, in 2011 IEEE power and energy society general meeting, 2011: IEEE, pp.1-8.
DOI: 10.1109/pes.2011.6039737
Google Scholar
[14]
A. K. Basu, Microgrids: Planning of fuel energy management by strategic deployment of CHP-based DERs–An evolutionary algorithm approach,, International Journal of Electrical Power & Energy Systems, vol. 44, no. 1, pp.326-336, (2013).
DOI: 10.1016/j.ijepes.2012.07.059
Google Scholar
[15]
G. C. Liao, Solve environmental economic dispatch of Smart MicroGrid containing distributed generation system–Using chaotic quantum genetic algorithm,, International Journal of Electrical Power & Energy Systems, vol. 43, no. 1, pp.779-787, (2012).
DOI: 10.1016/j.ijepes.2012.06.040
Google Scholar
[16]
P. A. Gbadega and A. K. Saha, Impact of Incorporating Disturbance Prediction on the Performance of Energy Management Systems in Micro-grid,, IEEE Access, (2020).
DOI: 10.1109/access.2020.3021598
Google Scholar
[17]
P. A. Gbadega and O. A. Balogun, Modeling and Control of Grid-Connected Solar-Wind Hybrid Micro-Grid System with Multiple-Input Ćuk DC-DC Converter for Household & High Power Applications,, in International Journal of Engineering Research in Africa, 2022, vol. 58: Trans Tech Publ, pp.191-224.
DOI: 10.4028/www.scientific.net/jera.58.191
Google Scholar
[18]
A. Hooshmand, H. A. Malki, and J. Mohammadpour, Power flow management of microgrid networks using model predictive control,, Computers & Mathematics with Applications, vol. 64, no. 5, pp.869-876, (2012).
DOI: 10.1016/j.camwa.2012.01.028
Google Scholar
[19]
M. Xu, H. Que, L. Ma, H. Su, Z. Xu, and P. Sun, An event-based interaction sampled-control for consensus of multi-agents with multiple time-varying delays,, IEEE Access, vol. 8, pp.114143-114152, (2020).
DOI: 10.1109/access.2020.3002806
Google Scholar
[20]
K. Edlund, J. D. Bendtsen, and J. B. Jørgensen, Hierarchical model-based predictive control of a power plant portfolio,, Control Engineering Practice, vol. 19, no. 10, pp.1126-1136, (2011).
DOI: 10.1016/j.conengprac.2011.06.002
Google Scholar
[21]
L. Xie and M. D. Ilic, Model predictive economic/environmental dispatch of power systems with intermittent resources,, in 2009 IEEE Power & Energy Society General Meeting, 2009: IEEE, pp.1-6.
DOI: 10.1109/pes.2009.5275940
Google Scholar
[22]
P. Zervas, H. Sarimveis, J. Palyvos, and N. Markatos, Model-based optimal control of a hybrid power generation system consisting of photovoltaic arrays and fuel cells,, Journal of power sources, vol. 181, no. 2, pp.327-338, (2008).
DOI: 10.1016/j.jpowsour.2007.11.067
Google Scholar
[23]
P. A. Gbadega and O. A. Balogun, Active and Reactive Power Droop Controller Design for Reliable and Optimal Control of Renewable-Based Micro-Grid,, in Advanced Engineering Forum, 2021, vol. 41: Trans Tech Publ, pp.111-136.
DOI: 10.4028/www.scientific.net/aef.41.111
Google Scholar
[24]
H. Chen, L. Gao, Z. Zhang, and H. Li, Optimal Energy Management Strategy for an Islanded Microgrid with Hybrid Energy Storage,, Journal of Electrical Engineering & Technology, vol. 16, no. 3, pp.1313-1325, (2021).
DOI: 10.1007/s42835-021-00683-y
Google Scholar
[25]
A. Elgammal and C. Boodoo, Optimal Energy Management Strategy for a DC Linked Hydro–PV–Wind Renewable Energy System for Hydroelectric Power Generation Optimization,, European Journal of Energy Research, vol. 1, no. 3, pp.9-18, (2021).
DOI: 10.24018/ejenergy.2021.1.3.16
Google Scholar
[26]
K. Uthaichana, R. DeCarlo, S. Bengea, M. Žefran, and S. Pekarek, Hybrid optimal theory and predictive control for power management in hybrid electric vehicle,, arXiv preprint arXiv:1804.00757, (2018).
DOI: 10.1109/acc.2008.4586617
Google Scholar
[27]
K. Uthaichana, R. A. DeCarlo, S. C. Bengea, S. Pekarek, and M. Zefran, Hybrid optimal theory and predicitive control for power management in hybrid electric vehicle,, Journal of Nonlinear Systems and Applications, vol. 2, no. 1-2, pp.96-110, (2011).
DOI: 10.1109/vppc.2005.1554588
Google Scholar
[28]
H. Wu, X. Liu, and M. Ding, Dynamic economic dispatch of a microgrid: Mathematical models and solution algorithm,, International Journal of Electrical Power & Energy Systems, vol. 63, pp.336-346, (2014).
DOI: 10.1016/j.ijepes.2014.06.002
Google Scholar
[29]
K. Shivam, J.-C. Tzou, and S.-C. Wu, A multi-objective predictive energy management strategy for residential grid-connected PV-battery hybrid systems based on machine learning technique,, Energy Conversion and Management, vol. 237, p.114103, (2021).
DOI: 10.1016/j.enconman.2021.114103
Google Scholar