Optimal Control Strategy for Energy Management of PV-Diesel-Battery Hybrid Power System of a Stand-Alone Micro-Grid

Article Preview

Abstract:

New control algorithms are required to deal with the intermittent, stochastic, and distributed nature of the generation and new consumption patterns. Control of micro-grids poses significant challenges that need to be addressed through advanced control techniques. This paper investigates an optimal control strategy that efficiently manages a stand-alone residential micro-grid comprising renewable and non-renewable energy sources. An adaptive model predictive control (AMPC) algorithm is implemented for choosing an optimal mode and set of inputs for the system to track both a constant and load-varying power demand profile. The problem to be solved by the AMPC control algorithm is to perform an optimal power reference tracking problem, where the consumption of energy from the diesel generator is minimized while maximizing the efficiency of the storage bank. The objective of the optimal control scheme is for the generation to meet the demand, minimize the use of fossil fuels and ensure the energy storage is always maintained around a nominal point such that it is not over-depleted. Therefore, the main goal is to maximize the use of renewable sources and minimize traditional sources. The design and simulation of the plant model and the AMPC controller are carried out on the MATLAB/Simulink environment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-70

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Madrigal, M. Bhatia, G. Elizondo, A. Sarkar, and M. Kojima, Twin peaks: Surmounting the global challenges of energy for all and greener, more efficient electricity services,, IEEE Power and Energy Magazine, vol. 10, no. 3, pp.20-29, (2012).

DOI: 10.1109/mpe.2012.2188666

Google Scholar

[2] A. S. Aziz et al., A new optimization strategy for wind/diesel/battery hybrid energy system,, Energy, vol. 239, p.122458, (2022).

DOI: 10.1016/j.energy.2021.122458

Google Scholar

[3] P. A. Gbadega and A. K. Saha, Load Frequency Control of a Two-Area Power System with a Stand-Alone Micro-grid based on Adaptive Model Predictive Control,, IEEE Journal of Emerging and Selected Topics in Power Electronics, (2020).

DOI: 10.1109/jestpe.2020.3012659

Google Scholar

[4] P. A. Gbadega and K. T. Akindeji, Linear quadratic regulator technique for optimal load frequency controller design of interconnected linear power systems,, in 2020 IEEE PES/IAS PowerAfrica, 2020: IEEE, pp.1-5.

DOI: 10.1109/powerafrica49420.2020.9219887

Google Scholar

[5] Y. Zheng, B. M. Jenkins, K. Kornbluth, A. Kendall, and C. Træholt, Optimization of a biomass-integrated renewable energy microgrid with demand side management under uncertainty,, Applied Energy, vol. 230, pp.836-844, (2018).

DOI: 10.1016/j.apenergy.2018.09.015

Google Scholar

[6] A. Yahiaoui, A. Tlemçani, and A. Kouzou, Optimization, Power Management and Reliability Evaluation of Hybrid Wind-PV-Diesel-Battery System for Rural Electrification,, Automation, Control and Intelligent Systems, vol. 9, no. 3, p.73, (2021).

DOI: 10.11648/j.acis.20210903.11

Google Scholar

[7] D. Fares, M. Fathi, and S. Mekhilef, Performance evaluation of metaheuristic techniques for optimal sizing of a stand-alone hybrid PV/wind/battery system,, Applied Energy, vol. 305, p.117823, (2022).

DOI: 10.1016/j.apenergy.2021.117823

Google Scholar

[8] A. Parisio, E. Rikos, G. Tzamalis, and L. Glielmo, Use of model predictive control for experimental microgrid optimization,, Applied Energy, vol. 115, pp.37-46, (2014).

DOI: 10.1016/j.apenergy.2013.10.027

Google Scholar

[9] A. Elnozahy, A. M. Yousef, S. S. Ghoneim, S. A. M. Abdelwahab, M. Mohamed, and F. K. Abo-Elyousr, Optimal Economic and Environmental Indices for Hybrid PV/Wind-Based Battery Storage System,, Journal of Electrical Engineering & Technology, vol. 16, no. 6, pp.2847-2862, (2021).

DOI: 10.1007/s42835-021-00810-9

Google Scholar

[10] L. Wang, Z. Wang, and R. Yang, Intelligent multiagent control system for energy and comfort management in smart and sustainable buildings,, IEEE transactions on smart grid, vol. 3, no. 2, pp.605-617, (2012).

DOI: 10.1109/tsg.2011.2178044

Google Scholar

[11] A. Takeuchi, T. Hayashi, Y. Nozaki, and T. Shimakage, Optimal scheduling using metaheuristics for energy networks,, IEEE Transactions on Smart Grid, vol. 3, no. 2, pp.968-974, (2012).

DOI: 10.1109/tsg.2012.2191580

Google Scholar

[12] L. M. Costa and G. Kariniotakis, A stochastic dynamic programming model for optimal use of local energy resources in a market environment,, in 2007 IEEE Lausanne Power Tech, 2007: IEEE, pp.449-454.

DOI: 10.1109/pct.2007.4538359

Google Scholar

[13] A. G. Tsikalakis and N. D. Hatziargyriou, Centralized control for optimizing microgrids operation,, in 2011 IEEE power and energy society general meeting, 2011: IEEE, pp.1-8.

DOI: 10.1109/pes.2011.6039737

Google Scholar

[14] A. K. Basu, Microgrids: Planning of fuel energy management by strategic deployment of CHP-based DERs–An evolutionary algorithm approach,, International Journal of Electrical Power & Energy Systems, vol. 44, no. 1, pp.326-336, (2013).

DOI: 10.1016/j.ijepes.2012.07.059

Google Scholar

[15] G. C. Liao, Solve environmental economic dispatch of Smart MicroGrid containing distributed generation system–Using chaotic quantum genetic algorithm,, International Journal of Electrical Power & Energy Systems, vol. 43, no. 1, pp.779-787, (2012).

DOI: 10.1016/j.ijepes.2012.06.040

Google Scholar

[16] P. A. Gbadega and A. K. Saha, Impact of Incorporating Disturbance Prediction on the Performance of Energy Management Systems in Micro-grid,, IEEE Access, (2020).

DOI: 10.1109/access.2020.3021598

Google Scholar

[17] P. A. Gbadega and O. A. Balogun, Modeling and Control of Grid-Connected Solar-Wind Hybrid Micro-Grid System with Multiple-Input Ćuk DC-DC Converter for Household & High Power Applications,, in International Journal of Engineering Research in Africa, 2022, vol. 58: Trans Tech Publ, pp.191-224.

DOI: 10.4028/www.scientific.net/jera.58.191

Google Scholar

[18] A. Hooshmand, H. A. Malki, and J. Mohammadpour, Power flow management of microgrid networks using model predictive control,, Computers & Mathematics with Applications, vol. 64, no. 5, pp.869-876, (2012).

DOI: 10.1016/j.camwa.2012.01.028

Google Scholar

[19] M. Xu, H. Que, L. Ma, H. Su, Z. Xu, and P. Sun, An event-based interaction sampled-control for consensus of multi-agents with multiple time-varying delays,, IEEE Access, vol. 8, pp.114143-114152, (2020).

DOI: 10.1109/access.2020.3002806

Google Scholar

[20] K. Edlund, J. D. Bendtsen, and J. B. Jørgensen, Hierarchical model-based predictive control of a power plant portfolio,, Control Engineering Practice, vol. 19, no. 10, pp.1126-1136, (2011).

DOI: 10.1016/j.conengprac.2011.06.002

Google Scholar

[21] L. Xie and M. D. Ilic, Model predictive economic/environmental dispatch of power systems with intermittent resources,, in 2009 IEEE Power & Energy Society General Meeting, 2009: IEEE, pp.1-6.

DOI: 10.1109/pes.2009.5275940

Google Scholar

[22] P. Zervas, H. Sarimveis, J. Palyvos, and N. Markatos, Model-based optimal control of a hybrid power generation system consisting of photovoltaic arrays and fuel cells,, Journal of power sources, vol. 181, no. 2, pp.327-338, (2008).

DOI: 10.1016/j.jpowsour.2007.11.067

Google Scholar

[23] P. A. Gbadega and O. A. Balogun, Active and Reactive Power Droop Controller Design for Reliable and Optimal Control of Renewable-Based Micro-Grid,, in Advanced Engineering Forum, 2021, vol. 41: Trans Tech Publ, pp.111-136.

DOI: 10.4028/www.scientific.net/aef.41.111

Google Scholar

[24] H. Chen, L. Gao, Z. Zhang, and H. Li, Optimal Energy Management Strategy for an Islanded Microgrid with Hybrid Energy Storage,, Journal of Electrical Engineering & Technology, vol. 16, no. 3, pp.1313-1325, (2021).

DOI: 10.1007/s42835-021-00683-y

Google Scholar

[25] A. Elgammal and C. Boodoo, Optimal Energy Management Strategy for a DC Linked Hydro–PV–Wind Renewable Energy System for Hydroelectric Power Generation Optimization,, European Journal of Energy Research, vol. 1, no. 3, pp.9-18, (2021).

DOI: 10.24018/ejenergy.2021.1.3.16

Google Scholar

[26] K. Uthaichana, R. DeCarlo, S. Bengea, M. Žefran, and S. Pekarek, Hybrid optimal theory and predictive control for power management in hybrid electric vehicle,, arXiv preprint arXiv:1804.00757, (2018).

DOI: 10.1109/acc.2008.4586617

Google Scholar

[27] K. Uthaichana, R. A. DeCarlo, S. C. Bengea, S. Pekarek, and M. Zefran, Hybrid optimal theory and predicitive control for power management in hybrid electric vehicle,, Journal of Nonlinear Systems and Applications, vol. 2, no. 1-2, pp.96-110, (2011).

DOI: 10.1109/vppc.2005.1554588

Google Scholar

[28] H. Wu, X. Liu, and M. Ding, Dynamic economic dispatch of a microgrid: Mathematical models and solution algorithm,, International Journal of Electrical Power & Energy Systems, vol. 63, pp.336-346, (2014).

DOI: 10.1016/j.ijepes.2014.06.002

Google Scholar

[29] K. Shivam, J.-C. Tzou, and S.-C. Wu, A multi-objective predictive energy management strategy for residential grid-connected PV-battery hybrid systems based on machine learning technique,, Energy Conversion and Management, vol. 237, p.114103, (2021).

DOI: 10.1016/j.enconman.2021.114103

Google Scholar