[1]
World Health Organization. Household air pollution and health. News; 8th May, 2018. Available at: http://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health (Accessed: 17.05.2021).
Google Scholar
[2]
M. Caniato, D. Carliez, A. Thulstrup, Challenges and opportunities of new energy schemes for food security in humanitarian contexts: A selective review. Sustain Energy Technol Assessments 22: 208-19 (2017). http://dx.doi.org/10.1016/j.seta.2017.02.006.
DOI: 10.1016/j.seta.2017.02.006
Google Scholar
[3]
T. Chowdhury, H. Chowdhury, P. Chowdhury, S.M. Sait, A. Paul, J. Uddin Ahamed, et al. A case study to application of exergy-based indicators to address the sustainability of Bangladesh residential sector. Sustain Energy Technol Assessments 37:100615 (2020). https://doi.org/10.1016/j.seta.2019.100615.
DOI: 10.1016/j.seta.2019.100615
Google Scholar
[4]
A.K. Stroad, and S. Joseph, Wood conserving cook stoves: a design guide. Volunteers in Technical Assistance (1980).
Google Scholar
[5]
G. De Lepeleire, K. Krishna Prasad, P. Verhaart, & P. Visser, A woodstove compendium. Eindhoven Univ. of Technology (Netherlands). Woodburning Stove Group (1981).
Google Scholar
[6]
P. Verhaart, On designing woodstoves. Proceedings of the Indian Academy of Sciences Section C: Engineering Sciences 5.4 287-326(1982).
DOI: 10.1007/bf02904583
Google Scholar
[7]
K. Krishna Prasad, E. Sangen, and P. Visser, Woodburning cookstoves. Advances in Heat transfer. Vol. 17. Elsevier 159-317(1985). https://doi.org/10.1016/S0065-2717(08)70286-7.
DOI: 10.1016/s0065-2717(08)70286-7
Google Scholar
[8]
P.P.S. Gusain, Cooking energy in India. Vikas Publishing House Private Limited, (1990).
Google Scholar
[9]
D. Still, and J. Kness, Capturing Heat: Five Earth-friendly Cooking Technologies and how to Build Them. Aprovecho Research Center (2003).
Google Scholar
[10]
H.S. Mukunda, U. Shrinivasa, and S. Dasappa, Portable single-pan wood stoves of high efficiency for domestic use. Sadhana 13(4): 237-270(1988). https://doi.org/10.1007/BF02759888.
DOI: 10.1007/bf02759888
Google Scholar
[11]
T.B. Reed, and R. Larson, A wood-gas stove for developing countries. Developments in thermochemical biomass conversion. Springer, Dordrecht 985-993(1997). https://doi.org/10.1007/978-94-009-1559-6_79.
DOI: 10.1007/978-94-009-1559-6_79
Google Scholar
[12]
D. Hegarty, The woodstove-Satisfying a burning need. Philips Research Password 28:29 (2009).
Google Scholar
[13]
H.S. Mukunda, S. Dasappa, P.J. Paul, N.K. Rajan, M. Yagnaraman, D.R. Kumar, M. Deogaonkar, Gasifier stoves-science, technology and field outreach. Current Science (Bangalore). 98(5):627-38(2010).
Google Scholar
[14]
N. MacCarty, D. Still, D. Ogle, Fuel use and emissions performance of fifty cooking stoves in the laboratory and related benchmarks of performance. Energy for Sustainable Development. 2010 Sep 1;14(3):161-71. https://doi.org/10.1016/j.esd.2010.06.002.
DOI: 10.1016/j.esd.2010.06.002
Google Scholar
[15]
K.R. Smith, R. Uma, V.V. Kishore, K. Lata, V. Joshi, J. Zhang et al. Greenhouse gases from small-scale combustion devices in developing countries, Phase IIa: Household Stoves in India. US Environmental Protection Agency, Research Triangle Park, NC. (2000).
Google Scholar
[16]
Y. Mehta, C. Richards, Effect of air flow rate and secondary air jets on the operation of TLUD gasifier cookstove. International Journal of Sustainable Energy. 39(3):207-17(2020). https://doi.org/10.1080/14786451.2019.1671388.
DOI: 10.1080/14786451.2019.1671388
Google Scholar
[17]
T. Kirch, C.H. Birzer, P.R. Medwell, L. Holden, The role of primary and secondary air on wood combustion in cookstoves. International Journal of Sustainable Energy. 37(3):268-77(2018). http://dx.doi.org/10.1080/14786451.2016.1166110.
DOI: 10.1080/14786451.2016.1166110
Google Scholar
[18]
F. Riva, F. Lombardi, C. Pavarini, E. Colombo, Fuzzy interval propagation of uncertainties in experimental analysis for improved and traditional three – Stone fire cookstoves. Sustain Energy Technol Assessments [Internet]. 18:59–68(2016). http://dx.doi.org/10.1016/j.seta.2016.09.007.
DOI: 10.1016/j.seta.2016.09.007
Google Scholar
[19]
K. Lask, K. Booker, A. Gadgil, Lessons learned from a comparison study of charcoal stoves for Haiti. Sustain Energy Technol Assessments. 22:188–93(2017). http://dx.doi.org/10.1016/j.seta.2017.02.008.
DOI: 10.1016/j.seta.2017.02.008
Google Scholar
[20]
H.E. Díez, I.N. Gómez, J.F. Pérez, Mass, energy, and exergy analysis of the microgasification process in a top-lit updraft reactor: Effects of firewood type and forced primary airflow. Sustain Energy Technol Assessments. 29:82–91(2018). https://doi.org/10.1016/j.seta.2018.07.003.
DOI: 10.1016/j.seta.2018.07.003
Google Scholar
[21]
K. Narula, Is sustainable energy security of India increasing or decreasing? International Journal of Sustainable Energy. 33(6):1054-75(2014). http://dx.doi.org/10.1080/14786451.2013.811411.
DOI: 10.1080/14786451.2013.811411
Google Scholar
[22]
M. Kumar, S. Kumar, S.K. Tyagi, Design, development and technological advancement in the biomass cookstoves: A review. Renewable and Sustainable Energy Reviews. 26:265-85(2013). https://doi.org/10.1016/j.rser.2013.05.010.
DOI: 10.1016/j.rser.2013.05.010
Google Scholar
[23]
M.P. Kshirsagar, V.R. Kalamkar, A comprehensive review on biomass cookstoves and a systematic approach for modern cookstove design. Renewable and Sustainable Energy Reviews. 30:580-603(2014). https://doi.org/10.1016/j.rser.2013.10.039.
DOI: 10.1016/j.rser.2013.10.039
Google Scholar
[24]
K.B. Sutar, S. Kohli, M.R. Ravi, A. Ray, Biomass cookstoves: A review of technical aspects. Renewable and Sustainable Energy Reviews. 41:1128-66(2015). https://doi.org/10.1016/j.rser.2014.09.003.
DOI: 10.1016/j.rser.2014.09.003
Google Scholar
[25]
H. Khodaei, F. Guzzomi, D. Patiño, B. Rashidian, G.H. Yeohb, Air staging strategies in biomass combustion-gaseous and particulate emission reduction potentials. Fuel Processing Technology. 157: 29-41 (2017). https://doi.org/10.1016/j.fuproc.2016.11.007.
DOI: 10.1016/j.fuproc.2016.11.007
Google Scholar
[26]
X. Qian, Statistical Analysis and Evaluation of the Advanced Biomass and Natural Gas Co-Combustion Performance. PhD diss., Morgan State University, (2019). Available at: https://mdsoar.org/bitstream/handle/11603/17922/Qian_2019.pdf?sequence=1&isAllowed=y (Accessed: 15.10.2021).
Google Scholar
[27]
X. Qian, S. Lee, R. Chandrasekaran, Y. Yang, M. Caballes, O. Alamu and G. Chen, Electricity evaluation and emission characteristics of poultry litter co-combustion process. Applied Sciences 9(19): 4116 (2019). https://doi.org/10.3390/app9194116.
DOI: 10.3390/app9194116
Google Scholar
[28]
E. Houshfar, Ø. Skreiberg, T. Løvås, . Todorović, and L. Sørum, Effect of excess air ratio and temperature on NOx emission from grate combustion of biomass in the staged air combustion scenario. Energy & Fuels 25(10): 4643-4654 (2011). https://doi.org/10.1021/ef200714d.
DOI: 10.1021/ef200714d
Google Scholar
[29]
Bureau of Indian Standards (BIS). Portable Solid Bio-Mass Cookstove (Chulha)-Specification [first revision of IS 13152(Part 1):1991] (2013).
Google Scholar
[30]
S. Taneja, A. Singh, V. Singh, R. Das, V. Patil, Design & development of forced draft cook stove. B. Tech. Project Report, Department of Mechanical Engineering, Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune (2017).
DOI: 10.35940/ijitee.g5475.059720
Google Scholar
[31]
A. Upadhya, A.K. Shukla, M. Mohnani, M. Luthra, M. Tandon, N. Panati, Design & development of natural draft cook stove. B. Tech. Project Report, Department of Mechanical Engineering, Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune (2017).
DOI: 10.23956/ijarcsse/v7i4/0161
Google Scholar
[32]
N. Ghormade, S. Gupta, P. Kumar, S. Kumar, V.K. Chaudhary, R. Kasbekar R et al. Development of two biomass cookstoves for rural households in 2nd National Conference on Recent Trends in Mechanical Engineering (NCRTME-2017) WCE, Sangli (29th and 30th June 2017).
Google Scholar
[33]
M.P. Brady, K. Banta, J. Mizia,, N. Lorenz, D.N. Leonard, Y. Yamamoto, M. DeFoort and J.R. Keiser, Alloy corrosion considerations in low-cost, clean biomass cookstoves for the developing world. Energy for Sustainable Development, 37: 20-32 (2017). http://dx.doi.org/10.1016/j.esd.2016.12.002.
DOI: 10.1016/j.esd.2016.12.002
Google Scholar
[34]
PAC Technical note: Diatomic Nitrogen Interference on total Nitrogen analysis by Oxidative Combustion and Chemiluminescence Detection. Available at: https://www.paclp.com/tenants/pac/documents/tn%20-%20diatomic%20nitrogen%20interference%20elements%20-%202019.1.pdf (Accessed: 15.10.2021).
Google Scholar