[1]
K. Ananda-Rao, R. Ali, and S. Taniselass, "Battery energy storage system assessment in a designed battery controller for load leveling and peak shaving applications," Journal of Renewable and Sustainable Energy, vol. 9, no. 4, 2017.
DOI: 10.1063/1.4991455
Google Scholar
[2]
Texas A & M University, IEEE Power & Energy Society, IEEE Power Electronics Society, IEEE Industry Applications Society, and Institute of Electrical and Electronics Engineers, TREC 2018 : the 2018 IEEE Texas Power and Energy Conference : February 8-9, 2018, Memorial Student Center, Texas A & M University, College Station, Texas, USA.
DOI: 10.1109/tpec42455.2018
Google Scholar
[3]
B. Hong, C. Yongnning, L. Yan, C. He, and W. Linjun, "Ancillary service analysis for improving large scale of wind power accommodation," in 2014 International Conference on Power System Technology, 2014, p.2608–2613.
DOI: 10.1109/POWERCON.2014.6993559
Google Scholar
[4]
M. S. Sayem and M. K. Hassan, "Designing Grid Connected 1.124 MW Photo-Voltaic System for Kuakata Coastal Area," in 2021 Asian Conference on Innovation in Technology, ASIANCON 2021, Institute of Electrical and Electronics Engineers Inc., Aug. 2021.
DOI: 10.1109/ASIANCON51346.2021.9544646
Google Scholar
[5]
S. Kundu, N. Gupta, and P. Kumar, "Review of solar photovoltaic maximum power point tracking techniques," in 2016 7th India International Conference on Power Electronics (IICPE), IEEE, 2016, p.1–6.
DOI: 10.1109/iicpe.2016.8079494
Google Scholar
[6]
D. del Giudice, F. Bizzarri, D. Linaro, and A. M. Brambilla, "Modular Multilevel Converter Modelling and Simulation for HVDC Systems".
DOI: 10.1007/978-3-031-12818-9_3
Google Scholar
[7]
M. P. Kazmierkowski, "Modular Multilevel Converters: Analysis, Control, and Applications [Book News]," IEEE Industrial Electronics Magazine, vol. 14, no. 3, p.113–114, 2020.
DOI: 10.1109/mie.2020.3008022
Google Scholar
[8]
M. S. Sayem and M. K. Hassan, "Designing Grid Connected 1.124 MW Photo-Voltaic System for Kuakata Coastal Area," in 2021 Asian Conference on Innovation in Technology (ASIANCON), IEEE, 2021, p.1–4.
DOI: 10.1109/asiancon51346.2021.9544646
Google Scholar
[9]
S. Haq, S. P. Biswas, M. K. Hosain, M. A. Rahman, M. R. Islam, and S. Jahan, "A modular multilevel converter with an advanced PWM control technique for grid-tied photovoltaic system," Energies (Basel), vol. 14, no. 2, p.331, 2021.
DOI: 10.3390/en14020331
Google Scholar
[10]
P. P. Patankar, M. M. Munshi, R. R. Deshmukh, and M. S. Ballal, "A modified control method for grid connected multiple rooftop solar power plants," IEEE Trans Ind Appl, vol. 57, no. 4, p.3306–3316, 2021.
DOI: 10.1109/tia.2021.3075195
Google Scholar
[11]
M. González, V. Cárdenas, H. Miranda, and R. Álvarez-Salas, "Modular multilevel converter for large-scale photovoltaic generation with reactive power flow and unbalanced active power extraction capabilities," Math Comput Simul, vol. 162, p.135–154, 2019.
DOI: 10.1016/j.matcom.2019.01.007
Google Scholar
[12]
S. Barcellona, M. Barresi, and L. Piegari, "MMC-Based PV Three-Phase System With Distributed MPPT," IEEE Transactions on Energy Conversion, vol. 37, no. 3, p.1567–1578, 2022.
DOI: 10.1109/TEC.2022.3167786
Google Scholar
[13]
X. Zhang and G. Feng, "MMC-Based PV Grid-Connected System With SMES-Battery Hybrid Energy Storage System," IEEE Transactions on Applied Superconductivity, vol. 34, no. 8, p.1–4, 2024.
DOI: 10.1109/TASC.2024.3420187
Google Scholar
[14]
Y. Pan, X. Sun, Y. Cai, X. Li, and W. Zhao, "An Improved Coordination Control for Enhancing Photovoltaic Power Imbalance Tolerant Capability of MMC-Based Photovoltaic System," IEEE Trans Power Electron, vol. 39, no. 9, p.11732–11745, 2024.
DOI: 10.1109/TPEL.2024.3404398
Google Scholar
[15]
S. Kumar, A. Varghese, R. Roy, and D. Bhattacharya, "Phase Locked Loop-based Synchronization of Solar PV System with Single-Phase Grid for Integrated Load Supply," International Journal of Intelligent Systems and Applications in Engineering, vol. 12, p.545–551, Dec. 2023.
Google Scholar
[16]
T. Huld, R. Müller, and A. Gambardella, "A new solar radiation database for estimating PV performance in Europe and Africa," Solar energy, vol. 86, no. 6, p.1803–1815, 2012.
DOI: 10.1016/j.solener.2012.03.006
Google Scholar
[17]
T. Huld, R. Müller, and A. Gambardella, "A new solar radiation database for estimating PV performance in Europe and Africa," Solar energy, vol. 86, no. 6, p.1803–1815, 2012.
DOI: 10.1016/j.solener.2012.03.006
Google Scholar
[18]
T. Dierauf, A. Growitz, S. Kurtz, J. L. B. Cruz, E. Riley, and C. Hansen, "Weather-corrected performance ratio," National Renewable Energy Lab.(NREL), Golden, CO (United States), 2013.
DOI: 10.2172/1078057
Google Scholar
[19]
F. A. Silva, "Power electronics and control techniques for maximum energy harvesting in photovoltaic systems (Femia, N. et al; 2013)[Book News]," IEEE Industrial Electronics Magazine, vol. 7, no. 3, p.66–67, 2013.
DOI: 10.1109/mie.2013.2272239
Google Scholar
[20]
R. W. Erickson and D. Maksimovic, Fundamentals of power electronics. Springer Science & Business Media, 2007.
Google Scholar
[21]
M. R. Javed, A. Waleed, U. S. Virk, and S. Z. ul Hassan, "Comparison of the adaptive neural-fuzzy interface system (ANFIS) based solar maximum power point tracking (MPPT) with other solar MPPT methods," in 2020 IEEE 23rd international multitopic conference (INMIC), IEEE, 2020, p.1–5.
DOI: 10.1109/inmic50486.2020.9318178
Google Scholar
[22]
R. P. K. Naidu and S. Meikandasivam, "Performance investigation of grid integrated photovoltaic/wind energy systems using ANFIS based hybrid MPPT controller," J Ambient Intell Humaniz Comput, vol. 12, p.5147–5159, 2021.
DOI: 10.1007/s12652-020-01967-3
Google Scholar
[23]
A. K. Dahiya, "Implementation and Comparison of Perturb & Observe, ANN and ANFIS Based MPPT Techniques," in 2018 international conference on inventive research in computing applications (ICIRCA), IEEE, 2018, p.1–5.
DOI: 10.1109/icirca.2018.8597271
Google Scholar
[24]
A. Haque, M. A. Khan, and V. S. Kurukuru, Design and Control of Grid-Connected Photovoltaic System. CRC Press, 2023.
Google Scholar
[25]
M. P. Kazmierkowski, "Modular Multilevel Converters: Analysis, Control, and Applications [Book News]," IEEE Industrial Electronics Magazine, vol. 14, no. 3, p.113–114, 2020.
DOI: 10.1109/mie.2020.3008022
Google Scholar
[26]
B. K. Bose, "Power electronics, smart grid, and renewable energy systems," Proceedings of the IEEE, vol. 105, no. 11, p.2011–2018, 2017.
Google Scholar
[27]
A. Viatkin, Modular Multilevel Converters with Interleaved Half-Bridge Submodules. in Springer Theses. Cham: Springer Nature Switzerland, 2023.
DOI: 10.1007/978-3-031-24712-5_2
Google Scholar
[28]
M. Saeedifard and R. Iravani, "Dynamic performance of a modular multilevel back-to-back HVDC system," IEEE Transactions on power delivery, vol. 25, no. 4, p.2903–2912, 2010.
DOI: 10.1109/tpwrd.2010.2050787
Google Scholar
[29]
E. Solas, G. Abad, J. A. Barrena, S. Aurtenetxea, A. Carcar, and L. Zając, "Modular multilevel converter with different submodule concepts—Part I: Capacitor voltage balancing method," IEEE Transactions on Industrial Electronics, vol. 60, no. 10, p.4525–4535, 2012.
DOI: 10.1109/tie.2012.2210378
Google Scholar
[30]
A. Sahraei, A. Chamorro, P. Kraft, and L. Breuer, "Application of machine learning models to predict maximum event water fractions in streamflow," Frontiers in Water, vol. 3, p.652100, 2021.
DOI: 10.3389/frwa.2021.652100
Google Scholar
[31]
K. Kulesza, A. Martinez, and N. Taylor, "Assessment of Typical Meteorological Year Data in Photovoltaic Geographical Information System 5.2, Based on Reanalysis and Ground Station Data from 147 European Weather Stations," Atmosphere (Basel), vol. 14, no. 12, Dec. 2023.
DOI: 10.3390/atmos14121803
Google Scholar
[32]
T. Huld, R. Müller, and A. Gambardella, "A new solar radiation database for estimating PV performance in Europe and Africa," Solar Energy, vol. 86, no. 6, p.1803–1815, 2012.
DOI: 10.1016/j.solener.2012.03.006
Google Scholar
[33]
A. G. Abo-Khalil, K. Sayed, A. Radwan, and IbrahimI. A. El-Sharkawy, "Analysis of the PV system sizing and economic feasibility study in a grid-connected PV system," Case Studies in Thermal Engineering, vol. 45, p.102903, 2023.
DOI: 10.1016/j.csite.2023.102903
Google Scholar
[34]
S. Sarkar, M. S. Bhaskar, K. Uma Rao, P. V, D. Almakhles, and U. Subramaniam, "Solar PV network installation standards and cost estimation guidelines for smart cities," Alexandria Engineering Journal, vol. 61, no. 2, p.1277–1287, 2022.
DOI: 10.1016/j.aej.2021.06.098
Google Scholar
[35]
R. Wiser, M. Bolinger, and J. Seel, "Benchmarking Utility-Scale PV Operational Expenses and Project Lifetimes: Results from a Survey of U.S. Solar Industry Professionals," 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:225862888
DOI: 10.2172/1631678
Google Scholar
[36]
R. Fu, D. J. Feldman, R. M. Margolis, M. A. Woodhouse, and K. B. Ardani, "U.S. Solar Photovoltaic System Cost Benchmark: Q1 2017," United States, 2017.
DOI: 10.2172/1395932
Google Scholar
[37]
Y. M. Al-Sharif, G. M. Sowilam, and T. A. Kawady, "Harmonic Analysis of Large Grid‐Connected PV Systems in Distribution Networks: A Saudi Case Study," International Journal of Photoenergy, vol. 2022, no. 1, p.8821192, 2022.
DOI: 10.1155/2022/8821192
Google Scholar
[38]
H. A. Hadi, A. Kassem, H. Amoud, and S. Nadweh, "Improve power quality and stability of grid-Connected PV system by using series filter," Heliyon, vol. 10, no. 21, 2024.
DOI: 10.1016/j.heliyon.2024.e39757
Google Scholar