[1]
X. Chen, B. Hopkins, H. Wang, L. O'Neill, F. Afghah, A. Razi, A. Watts, Wildland fire detection and monitoring using a drone-collected RGB/IR image dataset, IEEE Access. 10 (2022) 121301-121317.
DOI: 10.1109/access.2022.3222805
Google Scholar
[2]
C. Burke, S. Wich, K. Kusin, O. McAree, M. E. Harrison, B. Ripoll, S. Longmore, Thermal-drones as a safe and reliable method for detecting subterranean peat fires, Drones. 3, 1 (2019) 23.
DOI: 10.3390/drones3010023
Google Scholar
[3]
L.F. Oliveira, A.P. Moreira, M. F. Silva, Advances in forest robotics: A state-of-the-art survey, Robotics. 10, 2 (2021) 53.
DOI: 10.3390/robotics10020053
Google Scholar
[4]
M. Dorigo, G. Theraulaz, V. Trianni, Swarm robotics: Past, present, and future (point of view), in: Proceedings of the IEEE. (2021) 1152-1165
DOI: 10.1109/jproc.2021.3072740
Google Scholar
[5]
I. Navarro, F. Matıa, An introduction to swarm robotics, ISRN Robotics. (2013) 1-10.
Google Scholar
[6]
E. Sahin, Swarm robotics: From sources of inspiration to domains of application, in: International workshop on swarm robotics, Springer. (2005) 10-20.
DOI: 10.1007/978-3-540-30552-1_2
Google Scholar
[7]
R. Miletitch, A. Reina, M. Dorigo, V. Trianni, Emergent naming conventions in a foraging robot swarm" Swarm Intelligence. 16, 3 (2022) 211-232.
DOI: 10.1007/s11721-022-00212-1
Google Scholar
[8]
R. Sandhu, O. P. Sharma, V. Sharma, A Review on Swarm Robots, International Journal of Advanced Research in Computer and Communication Engineering. 4, 5 (2015) 218-222.
Google Scholar
[9]
T. M. Laing, S.L. Ng, A. Tomlinson, K. M. Martin, Security in Swarm Robotics, in: Handbook of Research on Design, Control, and Modeling of Swarm Robotics, IGI Global. 2 (2016) 42–66.
DOI: 10.4018/978-1-4666-9572-6.ch002
Google Scholar
[10]
M. Brambilla, E. Ferrante, M. Birattari, M. Dorigo, Swarm robotics: a review from the swarm engineering perspective, Swarm Intelligence. 7, 1 (2013) 1-41.
DOI: 10.1007/s11721-012-0075-2
Google Scholar
[11]
M. Schranz, M. Umlauft, M. Sende, W. Elmenreich, Swarm robotic behaviors and current applications, Frontiers in Robotics and AI. 7, 36 (2020) 74-93.
DOI: 10.3389/frobt.2020.00036
Google Scholar
[12]
R. Sendra-Arranz, A. Gutierrez, Evolution of situated and abstract communication in leader selection and borderline identification swarm robotics problems, Applied Sciences. 11, 8 (2021) 3516.
DOI: 10.3390/app11083516
Google Scholar
[13]
P. Walker, S. A. Amraii, M. Lewis, N. Chakraborty, K. Sycara, Control of swarms with multiple leader agents, in: IEEE International Conference on Systems, Man, and Cybernetics. (2014) 3567-3572.
DOI: 10.1109/smc.2014.6974483
Google Scholar
[14]
V. Karpov, I. Karpova, Leader election algorithms for static swarms, Biologically Inspired Cognitive Architectures. 12 (2015) 54-64.
DOI: 10.1016/j.bica.2015.04.001
Google Scholar
[15]
E. Olcay, K. Gabrich, B. Lohmann, Optimal control of a swarming multi-agent system through guidance of a leader-agent, IFAC-PapersOnLine. 52, 20 (2019) 1-6.
DOI: 10.1016/j.ifacol.2019.12.092
Google Scholar
[16]
K. Elamvazhuthip, Z. Kakish, A. Shirsat, S. Berman, Controllability and stabilization for herding a robotic swarm using a leader: A mean-field approach, IEEE Transactions on Robotics. 37, 2 (2020) 418-432.
DOI: 10.1109/tro.2020.3031237
Google Scholar
[17]
A. D. H. B. Tavares, S. P., A. V. Madruga, B.T. P. Nascimento, Dynamic leader allocation in multi-robot systems based on nonlinear model predictive control, Journal of Intelligent & Robotic Systems. 98 (2020) 359-376.
DOI: 10.1007/s10846-019-01064-4
Google Scholar
[18]
F. Li, Y. Ding, K. Hao, A neuroendocrine inspired dynamic leader selection model in formation control for multi-robot system. In Chinese Control and Decision Conference (2017) 5454 - 5459.
DOI: 10.1109/ccdc.2017.7979466
Google Scholar
[19]
F. Li, Y. Ding, K. Hao, A dynamic leader-follower strategy for multi-robot systems, in: IEEE International Conference on Systems, Man, and Cybernetics (2015) 298-303.
DOI: 10.1109/smc.2015.64
Google Scholar
[20]
S. Misra, P. K. Deb, K. Saini, Dynamic leader selection in a master-slave architecture-based micro-UAV swarm. In IEEE Global Communications Conference. (2021) 1-6.
DOI: 10.1109/globecom46510.2021.9685538
Google Scholar
[21]
C. H. Tesfay, Z. Xiang, L. Yang, M. A. Berwo, J. Mahmood, S. A. Chaudhry, An effective and efficient UAV leader selection scheme in swarm of UAVs, Physical Communication. 67 (2024) 102513
DOI: 10.1016/j.phycom.2024.102513
Google Scholar
[22]
C. N. Mavridis, N. Suriyarachchi, J. S. Baras, Detection of dynamically changing leaders in complex swarms from observed dynamic data. In International Conference on Decision and Game Theory for Security, Springer International Publishing. (2020) 223-240.
DOI: 10.1007/978-3-030-64793-3_12
Google Scholar
[23]
MathWorks Inc. (2020). MATLAB [online]. Website https://www.mathworks.com/ products/matlab.html [accessed 20 September 2022]
Google Scholar
[24]
P. Stein, A. Spalanzani, C. Laugier, V. Santos, Leader selection and following in dynamic environments, in: 12th International Conference on Control Automation Robotics & Vision IEEE. (2012) 124-129.
DOI: 10.1109/icarcv.2012.6485145
Google Scholar
[25]
Q. Wang, H. Zhang, A self-organizing area coverage method for swarm robots based on gradient and grouping, Symmetry. 13, 4 (2021) 680.
DOI: 10.3390/sym13040680
Google Scholar
[26]
H. Cai, S. Guo, H. Gao, A dynamic leader–follower approach for line marching of swarm robots, Unmanned Systems, 11, 1 (2023) 67-82.
DOI: 10.1142/s2301385023500024
Google Scholar
[27]
M. H. A., Majid, M. R. Arshad, R. M. Mokhtar, Swarm robotics behaviors and tasks: a technical review, Control engineering in robotics and industrial automation: Malaysian society for automatic control engineers (MACE) technical series. (2022) 99-167.
DOI: 10.1007/978-3-030-74540-0_5
Google Scholar
[28]
A. E. Adegunsoye, B. Ubochi, J. Macaulay, K. F. Akingbade, A hybrid gradient climbing algorithm for a swarm robot-based gas leak detector, IAES International Journal of Robotics and Automation. 13, 3 (2024) 255-263
DOI: 10.11591/ijra.v13i3.pp255-263
Google Scholar
[29]
Y. Elor, A. M. Bruckstein, Robot Cloud gradient climbing with point measurements, Theoretical Computer Science. 547 (2014) 90-103.
DOI: 10.1016/j.tcs.2014.06.025
Google Scholar
[30]
E. Bıyık, M. Arcak, Gradient climbing in formation via extremum seeking and passivity-based coordination rules, Asian Journal of Control. 10, 2 (2008) 201-211.
DOI: 10.1002/asjc.19
Google Scholar
[31]
S. J. Garrett, Introduction to Actuarial and Financial Mathematical Methods, Elsevier Inc., London, 2015.
Google Scholar
[32]
C. Jada, U. Ashok, B. Pavan, P. Vinod-Babu, Butterflies: A new source of inspiration for futuristic aerial robotics, in: Handbook of Smart Materials, Technologies, and Devices: Applications of Industry 4.0, Springer International Publishing. (2022) 813-829.
DOI: 10.1007/978-3-030-84205-5_157
Google Scholar
[33]
M. Bayati, Using cuckoo optimization algorithm and imperialist competitive algorithm to solve inverse kinematics problem for numerical control of robotic manipulators, in: Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 229, 5 (2015) 375-387.
DOI: 10.1177/0959651814568364
Google Scholar
[34]
M. A. Armada, P. de González Santos, L. Marques, A. T. de Almeida, Finding odours across large search spaces: A particle swarm-based approach, in: Climbing and Walking Robots: Proceedings of the 7th International Conference, Springer. (2005) 419 - 426.
DOI: 10.1007/3-540-29461-9_40
Google Scholar
[35]
Z. Qiao, J. Zhang, X. Qu, J. Xiong, Dynamic self-organizing leader-follower control in a swarm mobile robots system under limited communication, IEEE Access. 8, (2020) 53850-53856.
DOI: 10.1109/access.2020.2980778
Google Scholar