The Numerical Simulation of Air Foils Used on Unmanned Aerial Vehicles

Article Preview

Abstract:

This study investigates the aerodynamic performance of the NACA 2412 airfoil using Computational Fluid Dynamics (CFD) to provide cost-effective and accurate alternatives to traditional wind tunnel testing. The research focuses on comparing the Shear Stress Transport (SST) and k-epsilon turbulence models to optimize airfoil designs for unmanned aerial vehicles (UAVs). The findings indicate that the SST model exhibits superior accuracy in predicting lift coefficients, while the k-epsilon model tends to yield conservative trends. Future research will aim to enhance mesh quality and calibrate turbulence models for improved predictions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-72

Citation:

Online since:

June 2025

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Pahat, Johor, MALAYSIA et al., "A Comparative Study of Turbulence Models on Aerodynamics Characteristics of a NACA0012 Airfoil," Int. J. Integr. Eng., vol. 10, no. 1, Apr. 2018.

DOI: 10.30880/ijie.2018.10.01.019

Google Scholar

[2] Sudarsono, S. Huda, and T. Rusianto, "Prediction of Aerodynamics Coefficients of Modified NACA 4415 Airfoil Using Computational Fluid Dynamics," E3S Web Conf., vol. 202, p.11002, 2020.

DOI: 10.1051/e3sconf/202020211002

Google Scholar

[3] A. Adeel-Ur-Rehman, J. N. Theron, H. Kassem, B. Stoevesandt, and J. Peinke, "Improved performance of k − ω SST turbulence model in predicting airfoil characteristics for a wide range of airfoil thicknesses," J. Phys. Conf. Ser., vol. 2767, no. 2, p.022064, Jun. 2024.

DOI: 10.1088/1742-6596/2767/2/022064

Google Scholar

[4] S. M. A. Aftab, A. S. Mohd Rafie, N. A. Razak, and K. A. Ahmad, "Turbulence Model Selection for Low Reynolds Number Flows," PLOS ONE, vol. 11, no. 4, p. e0153755, Apr. 2016.

DOI: 10.1371/journal.pone.0153755

Google Scholar

[5] Fatima-zahra Hachimy, Ashraf A. Omar, and Omar Elsayed, "The Accuracy of the Numerical Solution in Predicting Ahmed Body Components Drag Coefficients," CFD Lett., vol. 14, no. 5, p.24–32, May 2022.

DOI: 10.37934/cfdl.14.5.2432

Google Scholar

[6] M. Gökdemir, S. Ürgün, and S. Fidan, "Comparative analysis and manufacturing of airfoil structures suitable for use at low speeds," J. Adv. Res. Nat. Appl. Sci., vol. 8, no. 4, p.600–613, Dec. 2022.

DOI: 10.28979/jarnas.1069147

Google Scholar

[7] Sudarsono, S. Huda, and T. Rusianto, "Prediction of Aerodynamics Coefficients of Modified NACA 4415 Airfoil Using Computational Fluid Dynamics," E3S Web Conf., vol. 202, p.11002, 2020.

DOI: 10.1051/e3sconf/202020211002

Google Scholar

[8] D. Emad, A. Mohamed, and M. Fanni, "Modeling and Flight Control of Small UAV with Active Morphing Wings," J. Intell. Robot. Syst., vol. 106, no. 2, p.42, Oct. 2022.

DOI: 10.1007/s10846-022-01740-y

Google Scholar

[9] D. S. Körpe and Ö. Ö. Kanat, "Aerodynamic Optimization of a UAV Wing subject to Weight, Geometric, Root Bending Moment, and Performance Constraints," Int. J. Aerosp. Eng., vol. 2019, p.1–14, Oct. 2019.

DOI: 10.1155/2019/3050824

Google Scholar

[10] Y. A. Cengel and John A. Cimbala, Fluid Mechanics-Fundamental and Applications. New York: McGraw-Hill, 2006.

Google Scholar

[11] K. Chen, "Controller design for transition flight of rotor-driven VTOL fixed-wing UAV based on PID," Appl. Comput. Eng., vol. 9, no. 1, p.15–21, Sep. 2023.

DOI: 10.54254/2755-2721/9/20230018

Google Scholar

[12] G. Droandi and G. Gibertini, "Aerodynamic shape optimisation of a proprotor and its validation by means of CFD and experiments," Aeronaut. J., vol. 119, no. 1220, p.1223–1251, Oct. 2015.

DOI: 10.1017/S0001924000011222

Google Scholar

[13] P. Kaparos, C. Papadopoulos, and K. Yakinthos, "Conceptual design methodology of a box wing aircraft: A novel commercial airliner," Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., vol. 232, no. 14, p.2651–2662, Nov. 2018.

DOI: 10.1177/0954410018795815

Google Scholar

[14] A. Şumnu, İ. H. Güzelbey, and O. Öğücü, "Aerodynamic Shape Optimization of a Missile Using a Multiobjective Genetic Algorithm," Int. J. Aerosp. Eng., vol. 2020, p.1–17, Jun. 2020.

DOI: 10.1155/2020/1528435

Google Scholar

[15] B. J. Evans, O. Hassan, J. W. Jones, K. Morgan, and L. Remaki, "Computational fluid dynamics applied to the aerodynamic design of a land‐based supersonic vehicle," Numer. Methods Partial Differ. Equ., vol. 27, no. 1, p.141–159, Jan. 2011.

DOI: 10.1002/num.20644

Google Scholar

[16] Y. Zhang, Q. Zhao, P. Mao, Q. Bai, F. Li, and S. Pavlova, "Design and Control of an Ultra-Low-Cost Logistic Delivery Fixed-Wing UAV," Appl. Sci., vol. 14, no. 11, p.4358, May 2024.

DOI: 10.3390/app14114358

Google Scholar

[17] C. Meng, D. Liu, N. Gao, and L. Li, "Investigation on improving fume hood performance via elimination of internal vortices: Experiments and CFD," Indoor Built Environ., vol. 31, no. 10, p.2467–2481, Dec. 2022.

DOI: 10.1177/1420326X221108865

Google Scholar

[18] G. Tefera, G. Bri̇Ght, and S. Adali̇, "Theoretical and computational studies on the optimal positions of NACA airfoils used in horizontal axis wind turbine blades," J. Energy Syst., vol. 6, no. 3, p.369–386, Sep. 2022.

DOI: 10.30521/jes.1055935

Google Scholar

[19] D. Guo, M. Xu, and S. L. Chen, "Time-Accurate Simulation of Longitudinal Flight Mechanics with Control by CFD/RBD Coupling," Appl. Mech. Mater., vol. 226–228, p.788–792, Nov. 2012.

DOI: 10.4028/www.scientific.net/AMM.226-228.788

Google Scholar

[20] K. Y. Hao, W. M. Wang, Y. Q. Shi, and S. S. Wang, "Effects of Shroud Curvature on the Performance of Centrifugal Compressor Blade," Adv. Eng. Forum, vol. 2–3, p.700–705, Dec. 2011.

DOI: 10.4028/www.scientific.net/AEF.2-3.700

Google Scholar

[21] A. R. Taherkhani et al., "Aerodynamic CFD Based Optimization of Police Car Using Bezier Curves," SAE Int. J. Mater. Manuf., vol. 10, no. 2, p.85–93, Apr. 2017.

DOI: 10.4271/2017-01-9450

Google Scholar

[22] H. Wang et al., "Aerodynamics of the Wells turbine with a Hawkmoth-inspired blade design," Bioinspir. Biomim., vol. 15, no. 6, p.066001, Sep. 2020.

DOI: 10.1088/1748-3190/abab67

Google Scholar

[23] F. Yang, Z. Yue, L. Li, and W. Yang, "Aerodynamic optimization method based on Bezier curve and radial basis function," Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., vol. 232, no. 3, p.459–471, Mar. 2018.

DOI: 10.1177/0954410016679433

Google Scholar

[24] N. Amahjour and A. Khamlichi, "Analysis of the effect of an obstacle on the wind energy potential," MATEC Web Conf., vol. 83, p.09004, 2016.

DOI: 10.1051/matecconf/20168309004

Google Scholar

[25] S. Levilly, S. Moussaoui, and J.-M. Serfaty, "Navier-Stokes-Based Regularization for 4d Flow MRI Super-Resolution," in 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), Kolkata, India: IEEE, Mar. 2022, p.1–5.

DOI: 10.1109/ISBI52829.2022.9761510

Google Scholar

[26] I. Perez‐Raya, M. F. Fathi, A. Baghaie, R. H. Sacho, K. M. Koch, and R. M. D'Souza, "Towards multi‐modal data fusion for super‐resolution and denoising of 4D‐Flow MRI," Int. J. Numer. Methods Biomed. Eng., vol. 36, no. 9, p. e3381, Sep. 2020.

DOI: 10.1002/cnm.3381

Google Scholar

[27] B. Ji, J. Huang, X. Lu, Y. Wu, and J. Liu, "An Improved Approach for Reducing the Dimensionality of Wing Aerodynamic Optimization Considering Longitudinal Stability," Aerospace, vol. 11, no. 1, p.80, Jan. 2024.

DOI: 10.3390/aerospace11010080

Google Scholar

[28] F. M. Callaghan and S. M. Grieve, "Spatial resolution and velocity field improvement of 4D‐flow MRI," Magn. Reson. Med., vol. 78, no. 5, p.1959–1968, Nov. 2017.

DOI: 10.1002/mrm.26557

Google Scholar

[29] M. Corti, P. Gramazio, D. Fustinoni, L. Vitali, and A. Niro, "Accuracy in evaluating heat transfer coefficient by RANS CFD simulations in a rectangular channel with high aspect ratio - Part 1: benchmark on a channel with plane walls," J. Phys. Conf. Ser., vol. 2509, no. 1, p.012009, May 2023.

DOI: 10.1088/1742-6596/2509/1/012009

Google Scholar