Polarization Reconfigurable Circular Patch MIMO Antenna with Improved Isolation

Article Preview

Abstract:

The present work represents polarization reconfigurable MIMO antenna which is design to work at 2.4 GHz (WLAN) and C band application. An inverted U-shaped slot and two PIN diodes per radiator are incorporated in the circular patch antenna to achieve polarization reconfigurability between Linear and Circular polarization (RHCP or LHCP). A simple rectangular strip is utilized between the radiators to achieve isolation improvement from -14 dB to -22dB in the proposed design. Computer Simulation Technology (CST) 2018 is used to design and validate the polarization reconfigurable MIMO antenna with sufficient isolation. Surface current distribution, Envelope Correlation Coefficient (ECC) and Diversity Gain (DG) and axial ratio are calculated using simulation software and used to validate circularly polarized MIMO design’s diverse behavior. The design is fabricated in low-cost FR-4 material and measurement is done to verify the simulation results. The measurement results show close agreement with simulated results and proves that the proposed design can be a better candidate for WLAN and C band application with polarization reconfiguration properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-84

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. F. Pues and A. R. Van de Capelle, An impedance-matching technique for increasing the bandwidth of microstrip antennas, IEEE Trans. Antennas Propag., vol. 37, no. 11, p.1345–1354, 1989.

DOI: 10.1109/8.43553

Google Scholar

[2] A. Khidre, K.-F. Lee, F. Yang, and A. Z. Elsherbeni, Circular Polarization Reconfigurable Wideband E-Shaped Patch Antenna for Wireless Applications, IEEE Trans. Antennas Propag., vol. 61, no. 2, p.960–964, Feb. 2013.

DOI: 10.1109/TAP.2012.2223436

Google Scholar

[3] D. Zhang, S. Mumtaz, and K. S. Huq, SISO to mmWave massive MIMO," in mmWave Massive MIMO: A Paradigm for 5G, Elsevier Inc., 2017, p.19–38.

DOI: 10.1016/B978-0-12-804418-6.00002-9

Google Scholar

[4] S.-W. Su, C.-T. Lee, and F.-S. Chang, Printed MIMO-Antenna System Using Neutralization-Line Technique for Wireless USB-Dongle Applications, IEEE Trans. Antennas Propag., vol. 60, no. 2, p.456–463, Feb. 2012.

DOI: 10.1109/TAP.2011.2173450

Google Scholar

[5] Z. Li, Z. Du, M. Takahashi, K. Saito, and K. Ito, Reducing Mutual Coupling of MIMO Antennas with Parasitic Elements for Mobile Terminals, IEEE Trans. Antennas Propag., vol. 60, no. 2, p.473–481, Feb. 2012.

DOI: 10.1109/TAP.2011.2173432

Google Scholar

[6] X. Zhu, X. Yang, Q. Song, and B. Lui, Compact UWB-MIMO antenna with metamaterial FSS decoupling structure," EURASIP J. Wirel. Commun. Netw., vol. 2017, no. 1, Dec. 2017.

DOI: 10.1186/s13638-017-0894-3

Google Scholar

[7] R. Chandel, A. K. Gautam, and K. Rambabu, Tapered Fed Compact UWB MIMO-Diversity Antenna with Dual Band-Notched Characteristics, IEEE Trans. Antennas Propag., vol. 66, no. 4, p.1677–1684, Apr. 2018.

DOI: 10.1109/TAP.2018.2803134

Google Scholar

[8] F. Wang, Z. Duan, S. Li, Z. Wang, and Y. Gong, Compact UWB MIMO Antenna with Metamaterial-inspired Isolator, 2018.

DOI: 10.2528/pierc18030201

Google Scholar

[9] R. Mark, N. Rajak, K. Mandal, and S. Das, Metamaterial based superstrate towards the isolation and gain enhancement of MIMO antenna for WLAN application, AEU - Int. J. Electron. Commun., vol. 100, p.144–152, Feb. 2019.

DOI: 10.1016/j.aeue.2019.01.011

Google Scholar

[10] C. K. Ghosh, M. Pratap, R. Kumar, and S. Pratap, Mutual Coupling Reduction of Microstrip MIMO Antenna Using Microstrip Resonator, Wirel. Pers. Commun., vol. 112, no. 3, p.2047–2056, Jun. 2020.

DOI: 10.1007/s11277-020-07138-z

Google Scholar

[11] C. Abdelhamid, H. Sakli, and N. Sakli, A four-element UWB MIMO antenna using SRRs for application in satellite communications," Int. J. Electr. Comput. Eng., vol. 11, no. 4, p.3154–3167, Aug. 2021.

DOI: 10.11591/ijece.v11i4.pp3154-3167

Google Scholar

[12] S. Loya and H. Khan, Complementary Split Ring Resonator Based Massive MIMO Antenna System for 5G Wireless Applications, 2021.

DOI: 10.2528/pierc21072802

Google Scholar

[13] S. K. Gupta, G. Ghasidas Vishwavidyalaya, A. Sharma, and S. Das, Gain And Isolation Enhancement of MIMO Antenna for WLAN Applications, 2022.

Google Scholar

[14] A. Abbas, N. Hussain, M. A. Sufian, J. Jung, S. M. Park, and N. Kim, Isolation and gain improvement of a rectangular notch uwb-mimo antenna, Sensors, vol. 22, no. 4, Feb. 2022.

DOI: 10.3390/s22041460

Google Scholar

[15] M. M. Hasan et al., "Gain and isolation enhancement of a wideband MIMO antenna using metasurface for 5G sub-6 GHz communication systems, Sci. Rep., vol. 12, no. 1, Dec. 2022.

DOI: 10.1038/s41598-022-13522-5

Google Scholar

[16] I. Aggarwal, S. Pandey, M. R. Tripathy, and A. Mittal, A super wideband MIMO antenna with metamaterial superstrate for gain enhancement at WLAN frequency band, Int. J. Syst. Assur. Eng. Manag., 2022.

DOI: 10.1007/s13198-022-01675-5

Google Scholar

[17] D. V. S. Prasad, H. V. Singh, S. Tripathi, and P. P. Paltani, Dual-band full-duplex antenna with high isolation using differential fed and dual-polarization, Microw. Opt. Technol. Lett., vol. 65, no. 1, pp.192-203, Jan. 2023.

DOI: 10.1002/mop.33452

Google Scholar

[18] S. K. Gupta, R. Mark, and S. Das, Triple notched MIMO antenna for S and C band applications," Int. J. Electron. Lett., p.113, Jul. 2024.

DOI: 10.1080/21681724.2024.2372733

Google Scholar

[19] D.-H. Lee, W.-S. Yoon, S.-M. Han, S.-M. Pyo, and Y.-S. Kim, A Switchable Circularly Polarized Microstrip Antenna using Asymmetric U-shaped Slotted Ground Structures, J. Korea Acad.-Ind. Coop. Soc., vol. 11, no. 1, pp.85-91, Jan. 2010.

DOI: 10.5762/KAIS.2010.11.1.085

Google Scholar

[20] S. W. Lee and Y. J. Sung, Simple Polarization-Reconfigurable Antenna With T-Shaped Feed, IEEE Antennas Wirel. Propag. Lett., vol. 15, p.114–117, 2016.

DOI: 10.1109/LAWP.2015.2432462

Google Scholar

[21] M. Tewari, A. Yadav, and R. P. Yadav, "Polarization reconfigurable circular patch antenna: Parasitic stub," in 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), IEEE, Mar. 2017, p.1083–1086.

DOI: 10.1109/WiSPNET.2017.8299929

Google Scholar

[22] L. S. Yang, L. Yang, Y. A. Zhu, K. Yoshitomi, and H. Kanaya, "Polarization reconfigurable slot antenna for 5.8 GHz wireless applications," AEU - International Journal of Electronics and Communications, vol. 101, p.27–32, Mar. 2019.

DOI: 10.1016/j.aeue.2019.01.022

Google Scholar

[23] M. E. Yassin, H. A. Mohamed, E. A. F. Abdallah, and H. S. El-Hennawy, "Circularly Polarized Wideband-to-Narrowband Switchable Antenna," IEEE Access, vol. 7, p.36010–36018, 2019.

DOI: 10.1109/ACCESS.2019.2904697

Google Scholar

[24] T. Le, H.-Y. Park, and T.-Y. Yun, "Simple Reconfigurable Circularly Polarized Antenna at Three Bands," Sensors, vol. 19, no. 10, p.2316, May 2019.

DOI: 10.3390/s19102316

Google Scholar

[25] E. Al Abbas, N. Nguyen-Trong, A. T. Mobashsher, and A. M. Abbosh, "Polarization-Reconfigurable Antenna Array for Millimeter-Wave 5G," IEEE Access, vol. 7, p.131214–131220, 2019.

DOI: 10.1109/ACCESS.2019.2939815

Google Scholar

[26] U. Ullah, I. Ben Mabrouk, and S. Koziel, "Enhanced-Performance Circularly Polarized MIMO Antenna with Polarization/Pattern Diversity," IEEE Access, vol. 8, p.11887–11895, 2020.

DOI: 10.1109/ACCESS.2020.2966052

Google Scholar

[27] S. Kumar, S. K. Palaniswamy, H. C. Choi, and K. W. Kim, "Compact Dual Circularly-Polarized Quad-Element MIMO/Diversity Antenna for Sub-6 GHz Communication Systems," Sensors, vol. 22, no. 24, p.9827, Dec. 2022.

DOI: 10.3390/s22249827

Google Scholar

[28] C. A. Balanis, Antenna Theory Analysis and Design, 4th ed. Wiley, 2016.

Google Scholar

[29] B. Li, "Axial ratio measurements of circularly polarised antennas based on polarisation rotation," IET Microwaves, Antennas & Propagation, vol. 12, no. 15, p.2379–2382, Dec. 2018.

DOI: 10.1049/iet-map.2018.5421

Google Scholar