[1]
A.G. Oki, B. Ubochi, Application of Object Tracking for Intelligent Transport Systems. Journal of Electrical Engineering, Electronics, Control and Computer Science, (2021) 8(2), pp.15-24.
Google Scholar
[2]
A. Samson, P. Akinlolu, O. Olugbenga, Smart traffic signal control system for two inter-dependent intersections in Akure, Nigeria. Journal of Engineering Studies and Research, (2022) 28(3), pp.82-92.
DOI: 10.29081/jesr.v28i3.010
Google Scholar
[3]
G. Sidorenko, J. Thunberg, K. Sjöberg, A. Vinel, Vehicle-to-vehicle communication for safe and fuel-efficient platooning. In 2020 IEEE Intelligent Vehicles Symposium (IV) (2020 ) (pp.795-802). IEEE.
DOI: 10.1109/iv47402.2020.9304719
Google Scholar
[4]
M. Hu, C. Li, Y. Bian, H. Zhang, Z. Qin, B. Xu, Fuel economy-oriented vehicle platoon control using economic model predictive control. IEEE Transactions on Intelligent Transportation Systems, (2022) 23(11), pp.20836-20849.
DOI: 10.1109/tits.2022.3183090
Google Scholar
[5]
V. Turri, B. Besselink, K H. Johansson, Cooperative look-ahead control for fuel-efficient and safe heavy-duty vehicle platooning. IEEE Transactions on Control Systems Technology, (2016) 25 (1), pp.12-28.
DOI: 10.1109/tcst.2016.2542044
Google Scholar
[6]
F. Gao, S.E. Li, Y. Zheng, D. Kum, Robust control of heterogeneous vehicular platoon with uncertain dynamics and communication delay. IET Intelligent Transport Systems, (2016) 10(7), pp.503-513.
DOI: 10.1049/iet-its.2015.0205
Google Scholar
[7]
J. Yoshida, T. Sugimachi, T. Fukao, Y. Suzuki, K. Aoki, August. Autonomous driving of a truck based on path following control. In Proc. 10th Int. Symposium on Advanced Vehicle Control (CD-ROM) (2010).
Google Scholar
[8]
Y. Zheng, S.E. Li, J. Wang, D. Cao, K. Li, Stability and scalability of homogeneous vehicular platoon: Study on the influence of information flow topologies. IEEE Transactions on Intelligent Transportation Systems, (2015) 17(1), pp.14-26.
DOI: 10.1109/tits.2015.2402153
Google Scholar
[9]
S.E. Li, X. Qin, Y. Zheng, J. Wang, K. Li, H. Zhang, Distributed platoon control under topologies with complex eigenvalues: Stability analysis and controller synthesis. IEEE Transactions on Control Systems Technology, (2017) 27(1), pp.206-220.
DOI: 10.1109/tcst.2017.2768041
Google Scholar
[10]
A.O. Owojori, K.F. Akingbade, W.O Apena, E.O. Ogunti, Stability control modelling under dynamic motion scenario of a differential drive robot. Journal of Engineering Studies and Research, (2021) 27(3), pp.64-73.
DOI: 10.29081/jesr.v27i3.289
Google Scholar
[11]
G. Guo, D. Li, Adaptive sliding mode control of vehicular platoons with prescribed tracking performance. IEEE Transactions on Vehicular Technology, (2019) 68(8), pp.7511-7520.
DOI: 10.1109/tvt.2019.2921816
Google Scholar
[12]
L. Xu, W. Zhuang, G. Yin, C. Bian, Energy-oriented cruising strategy design of vehicle platoon considering communication delay and disturbance. Transportation Research Part C: Emerging Technologies, (2019) 107, pp.34-53.
DOI: 10.1016/j.trc.2019.07.019
Google Scholar
[13]
C. Zhai, Y. Liu, F. Luo, A switched control strategy of heterogeneous vehicle platoon for multiple objectives with state constraints. IEEE Transactions on Intelligent Transportation Systems, (2018) 20(5), pp.1883-1896.
DOI: 10.1109/tits.2018.2841980
Google Scholar
[14]
B. Sakhdari, N.L. Azad, A distributed reference governor approach to ecological cooperative adaptive cruise control. IEEE Transactions on Intelligent Transportation Systems, (2017) 19(5), pp.1496-1507.
DOI: 10.1109/tits.2017.2735380
Google Scholar
[15]
S. Gupta, S.R Deshpande, D. Tufano, M. Canova, G. Rizzoni, K. Aggoune, P. Olin, J. Kirwan, Estimation of fuel economy on real-world routes for next-generation connected and automated hybrid powertrains (No. 2020-01-0593). (2020) SAE Technical Paper.
DOI: 10.4271/2020-01-0593
Google Scholar
[16]
G. Conway, A. Joshi, F. Leach, A. García, P.K. Senecal, A review of current and future powertrain technologies and trends in 2020. Transportation Engineering, (2021) 5, p.100080.
DOI: 10.1016/j.treng.2021.100080
Google Scholar
[17]
W. Zhao, D. Ngoduy, S. Shepherd, R. Liu, M. Papageorgiou, A platoon-based cooperative eco-driving model for mixed automated and human-driven vehicles at a signalised intersection. Transportation Research Part C: Emerging Technologies, (2018) 95, pp.802-821.
DOI: 10.1016/j.trc.2018.05.025
Google Scholar
[18]
D. He, T. Qiu, R. Luo, Fuel efficiency‐oriented platooning control of connected nonlinear vehicles: a distributed economic MPC approach. Asian Journal of Control, (2020) 22(4), pp.1628-1638.
DOI: 10.1002/asjc.2049
Google Scholar
[19]
M. Pirani, S. Baldi, K.H. Johansson, Impact of network topology on the resilience of vehicle platoons. IEEE Transactions on Intelligent Transportation Systems, (2022) 23(9), 15166-15177.
DOI: 10.1109/tits.2021.3137826
Google Scholar
[20]
P. Wang, H. Deng, J. Zhang, L. Wang, M. Zhang, Y. Li, Model predictive control for connected vehicle platoon under switching communication topology. IEEE Transactions on Intelligent Transportation Systems, (2021) 23(7), 7817-7830.
DOI: 10.1109/tits.2021.3073012
Google Scholar
[21]
Y. Zheng, S.E. Li, K. Li, Borrelli, J.K. Hedrick, Distributed model predictive control for heterogeneous vehicle platoons under unidirectional topologies. IEEE Transactions on Control Systems Technology, (2016) 25(3), pp.899-910.
DOI: 10.1109/tcst.2016.2594588
Google Scholar
[22]
A. Prayitno, I. Nilkhamhang, V2V network topologies for vehicle platoons with cooperative state variable feedback control. In 2021 Second International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (2021) (ICA-SYMP) (pp.1-4). IEEE.
DOI: 10.1109/ica-symp50206.2021.9358435
Google Scholar
[23]
M.H. Basiri, B. Ghojogh, N.L. Azad, S. Fischmeister, F. Karray, M. Crowley, Distributed nonlinear model predictive control and metric learning for heterogeneous vehicle platooning with cut-in/cut-out maneuvers. In 2020 59th IEEE Conference on Decision and Control (2020) (pp.2849-2856). IEEE.
DOI: 10.1109/cdc42340.2020.9304180
Google Scholar
[24]
Q. Luo, J. Li, H. Zhang, Drag coefficient modeling of heterogeneous connected platooning vehicles via BP neural network and PSO algorithm. Neurocomputing, (2022) 484, pp.117-127.
DOI: 10.1016/j.neucom.2020.12.136
Google Scholar
[25]
L. Xiao, F. Gao, Practical string stability of platoon of adaptive cruise control vehicles. IEEE Transactions on intelligent transportation systems, (2011) 12(4), pp.1184-1194.
DOI: 10.1109/tits.2011.2143407
Google Scholar
[26]
Y. Bian, C. Du, M. Hu, S.E. Li, H. Liu, C. Li, Fuel economy optimization for platooning vehicle swarms via distributed economic model predictive control. IEEE Transactions on Automation Science and Engineering, (2021) 19(4), pp.2711-2723.
DOI: 10.1109/tase.2021.3128920
Google Scholar
[27]
W.B. Dunbar, D.S. Caveney, Distributed receding horizon control of vehicle platoons: Stability and string stability. IEEE Transactions on Automatic Control, (2011) 57(3), pp.620-633.
DOI: 10.1109/tac.2011.2159651
Google Scholar
[28]
M. Hu, X. Zhao, F. Hui, B. Tian, Z. Xu, X. Zhang, Modeling and analysis on minimum safe distance for platooning vehicles based on field test of communication delay. Journal of advanced transportation, (2021) pp.1-15.
DOI: 10.1155/2021/5543114
Google Scholar