Modelling and Performance Evaluation of Two-Leader Following Communication Topology in Heterogenous Platoons

Article Preview

Abstract:

Control strategies for vehicle platoons remain a critical challenge, particularly in heterogeneous configurations. The performance of Two Leader Follower (TLF) is evaluated against the bench mark performance of Two-Predecessor Leader Following (TPLF), emphasizing the impact of different communication topologies and the role of both primary and co-leaders. Distributed Model Predictive Control (DMPC) is utilized to maintain stability across linked vehicles. The co-tier strategy, featuring Car 1 and Car 3 as leaders, shows promising performance in scenarios such as military and agricultural operations, where multiple platoons are utilized. However, simulation results indicate that the TPLF topology remains the most effective for achieving optimal performance. These findings underscore the importance of communication topology selection in platooning control, with co-tier strategies offering valuable advantages in specific application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

141-152

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.G. Oki, B. Ubochi, Application of Object Tracking for Intelligent Transport Systems. Journal of Electrical Engineering, Electronics, Control and Computer Science, (2021) 8(2), pp.15-24.

Google Scholar

[2] A. Samson, P. Akinlolu, O. Olugbenga, Smart traffic signal control system for two inter-dependent intersections in Akure, Nigeria. Journal of Engineering Studies and Research, (2022) 28(3), pp.82-92.

DOI: 10.29081/jesr.v28i3.010

Google Scholar

[3] G. Sidorenko, J. Thunberg, K. Sjöberg, A. Vinel, Vehicle-to-vehicle communication for safe and fuel-efficient platooning. In 2020 IEEE Intelligent Vehicles Symposium (IV) (2020 ) (pp.795-802). IEEE.

DOI: 10.1109/iv47402.2020.9304719

Google Scholar

[4] M. Hu, C. Li, Y. Bian, H. Zhang, Z. Qin, B. Xu, Fuel economy-oriented vehicle platoon control using economic model predictive control. IEEE Transactions on Intelligent Transportation Systems, (2022) 23(11), pp.20836-20849.

DOI: 10.1109/tits.2022.3183090

Google Scholar

[5] V. Turri, B. Besselink, K H. Johansson, Cooperative look-ahead control for fuel-efficient and safe heavy-duty vehicle platooning. IEEE Transactions on Control Systems Technology, (2016) 25 (1), pp.12-28.

DOI: 10.1109/tcst.2016.2542044

Google Scholar

[6] F. Gao, S.E. Li, Y. Zheng, D. Kum, Robust control of heterogeneous vehicular platoon with uncertain dynamics and communication delay. IET Intelligent Transport Systems, (2016) 10(7), pp.503-513.

DOI: 10.1049/iet-its.2015.0205

Google Scholar

[7] J. Yoshida, T. Sugimachi, T. Fukao, Y. Suzuki, K. Aoki, August. Autonomous driving of a truck based on path following control. In Proc. 10th Int. Symposium on Advanced Vehicle Control (CD-ROM) (2010).

Google Scholar

[8] Y. Zheng, S.E. Li, J. Wang, D. Cao, K. Li, Stability and scalability of homogeneous vehicular platoon: Study on the influence of information flow topologies. IEEE Transactions on Intelligent Transportation Systems, (2015) 17(1), pp.14-26.

DOI: 10.1109/tits.2015.2402153

Google Scholar

[9] S.E. Li, X. Qin, Y. Zheng, J. Wang, K. Li, H. Zhang, Distributed platoon control under topologies with complex eigenvalues: Stability analysis and controller synthesis. IEEE Transactions on Control Systems Technology, (2017) 27(1), pp.206-220.

DOI: 10.1109/tcst.2017.2768041

Google Scholar

[10] A.O. Owojori, K.F. Akingbade, W.O Apena, E.O. Ogunti, Stability control modelling under dynamic motion scenario of a differential drive robot. Journal of Engineering Studies and Research, (2021) 27(3), pp.64-73.

DOI: 10.29081/jesr.v27i3.289

Google Scholar

[11] G. Guo, D. Li, Adaptive sliding mode control of vehicular platoons with prescribed tracking performance. IEEE Transactions on Vehicular Technology, (2019) 68(8), pp.7511-7520.

DOI: 10.1109/tvt.2019.2921816

Google Scholar

[12] L. Xu, W. Zhuang, G. Yin, C. Bian, Energy-oriented cruising strategy design of vehicle platoon considering communication delay and disturbance. Transportation Research Part C: Emerging Technologies, (2019) 107, pp.34-53.

DOI: 10.1016/j.trc.2019.07.019

Google Scholar

[13] C. Zhai, Y. Liu, F. Luo, A switched control strategy of heterogeneous vehicle platoon for multiple objectives with state constraints. IEEE Transactions on Intelligent Transportation Systems, (2018) 20(5), pp.1883-1896.

DOI: 10.1109/tits.2018.2841980

Google Scholar

[14] B. Sakhdari, N.L. Azad, A distributed reference governor approach to ecological cooperative adaptive cruise control. IEEE Transactions on Intelligent Transportation Systems, (2017) 19(5), pp.1496-1507.

DOI: 10.1109/tits.2017.2735380

Google Scholar

[15] S. Gupta, S.R Deshpande, D. Tufano, M. Canova, G. Rizzoni, K. Aggoune, P. Olin, J. Kirwan, Estimation of fuel economy on real-world routes for next-generation connected and automated hybrid powertrains (No. 2020-01-0593). (2020) SAE Technical Paper.

DOI: 10.4271/2020-01-0593

Google Scholar

[16] G. Conway, A. Joshi, F. Leach, A. García, P.K. Senecal, A review of current and future powertrain technologies and trends in 2020. Transportation Engineering, (2021) 5, p.100080.

DOI: 10.1016/j.treng.2021.100080

Google Scholar

[17] W. Zhao, D. Ngoduy, S. Shepherd, R. Liu, M. Papageorgiou, A platoon-based cooperative eco-driving model for mixed automated and human-driven vehicles at a signalised intersection. Transportation Research Part C: Emerging Technologies, (2018) 95, pp.802-821.

DOI: 10.1016/j.trc.2018.05.025

Google Scholar

[18] D. He, T. Qiu, R. Luo, Fuel efficiency‐oriented platooning control of connected nonlinear vehicles: a distributed economic MPC approach. Asian Journal of Control, (2020) 22(4), pp.1628-1638.

DOI: 10.1002/asjc.2049

Google Scholar

[19] M. Pirani, S. Baldi, K.H. Johansson, Impact of network topology on the resilience of vehicle platoons. IEEE Transactions on Intelligent Transportation Systems, (2022) 23(9), 15166-15177.

DOI: 10.1109/tits.2021.3137826

Google Scholar

[20] P. Wang, H. Deng, J. Zhang, L. Wang, M. Zhang, Y. Li, Model predictive control for connected vehicle platoon under switching communication topology. IEEE Transactions on Intelligent Transportation Systems, (2021) 23(7), 7817-7830.

DOI: 10.1109/tits.2021.3073012

Google Scholar

[21] Y. Zheng, S.E. Li, K. Li, Borrelli, J.K. Hedrick, Distributed model predictive control for heterogeneous vehicle platoons under unidirectional topologies. IEEE Transactions on Control Systems Technology, (2016) 25(3), pp.899-910.

DOI: 10.1109/tcst.2016.2594588

Google Scholar

[22] A. Prayitno, I. Nilkhamhang, V2V network topologies for vehicle platoons with cooperative state variable feedback control. In 2021 Second International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (2021) (ICA-SYMP) (pp.1-4). IEEE.

DOI: 10.1109/ica-symp50206.2021.9358435

Google Scholar

[23] M.H. Basiri, B. Ghojogh, N.L. Azad, S. Fischmeister, F. Karray, M. Crowley, Distributed nonlinear model predictive control and metric learning for heterogeneous vehicle platooning with cut-in/cut-out maneuvers. In 2020 59th IEEE Conference on Decision and Control (2020) (pp.2849-2856). IEEE.

DOI: 10.1109/cdc42340.2020.9304180

Google Scholar

[24] Q. Luo, J. Li, H. Zhang, Drag coefficient modeling of heterogeneous connected platooning vehicles via BP neural network and PSO algorithm. Neurocomputing, (2022) 484, pp.117-127.

DOI: 10.1016/j.neucom.2020.12.136

Google Scholar

[25] L. Xiao, F. Gao, Practical string stability of platoon of adaptive cruise control vehicles. IEEE Transactions on intelligent transportation systems, (2011) 12(4), pp.1184-1194.

DOI: 10.1109/tits.2011.2143407

Google Scholar

[26] Y. Bian, C. Du, M. Hu, S.E. Li, H. Liu, C. Li, Fuel economy optimization for platooning vehicle swarms via distributed economic model predictive control. IEEE Transactions on Automation Science and Engineering, (2021) 19(4), pp.2711-2723.

DOI: 10.1109/tase.2021.3128920

Google Scholar

[27] W.B. Dunbar, D.S. Caveney, Distributed receding horizon control of vehicle platoons: Stability and string stability. IEEE Transactions on Automatic Control, (2011) 57(3), pp.620-633.

DOI: 10.1109/tac.2011.2159651

Google Scholar

[28] M. Hu, X. Zhao, F. Hui, B. Tian, Z. Xu, X. Zhang, Modeling and analysis on minimum safe distance for platooning vehicles based on field test of communication delay. Journal of advanced transportation, (2021) pp.1-15.

DOI: 10.1155/2021/5543114

Google Scholar