Assessment of the Effectiveness of a Miniature Pyrolysis Pilot Plant Developed to Manage Plastic Waste Generated in Ovia North-East LGA, Nigeria

Article Preview

Abstract:

An effective and ecologically plastic waste (PW) management system that is either directly or indirectly related to the Sustainable Development Goals (SDGs) and waste to clean energy initiatives like SDGs 7, 11, 12, 13, and 14 can be achieved through the innovative and sustainable process of pyrolysis. The aim of this study is to evaluate the effectiveness of a miniature pyrolysis pilot plant developed to manage plastic waste generated in Ovia North-East, Nigeria. The PW utilized in this study was collected daily from residences, businesses, marketplaces, and hospitals. At the collecting location, it was categorized using plastic identification code into PET, HDPE, PVC, LDPE, PP, and PS. A bomb calorimeter (ASTM D 5865-85) was used to experimentally establish the sorted PW's heating value (HV). A thermogravimetric analyzer (SII 6300 EXSTAR, Seiko Instruments) was used to evaluate the mass loss of PW in order to ascertain how its composition varied with temperature and time. After being shredded to smaller pieces, the PW was put into the reactor both independently and in combination. To ascertain the pyrolysis oil yield (POY) from known masses of distinct PWs (0.5 kg, 1.5 kg----5 kg), a performance test was conducted. According to the results obtained, PET PW had the lowest hydrogen carbon (H/C) ratio when compared to other PW samples. The performance of the H/C ratio is arranged as follows: HDPE (0.2034) > LDPE (0.1971) > PP (0.1737) > PS (0.1290) > PVC (0.1278) >PET (0.1188). Additionally, the PWs with the highest heating values used in this study were HDPE (44.57 MJ/kg), LDPE (44.44 MJ/kg), PS (41.22 MJ/kg), PVC (41.01 MJ/kg), PP (44.53 MJ/kg), and PET (22.87 MJ/kg). Besides, the mixed plastic waste stream (MPWs) produces the most pyrolysis oil, although the POY yield potential varies according to the PWs' composition. Furthermore, the least amount of POY was recorded by PVC. The following is the order of the PW POY: MPWs > PS > HDPE > LDPE > PP > PET > PVC. This study has demonstrated that generated plastic waste in Ovia North-East LGA, Nigeria, can be processed into solid char and pyrolysis oil using the developed Miniature Pyrolysis Pilot Plant, thereby protecting the ecosystems, human health, resources, and the climate, which are in line with SDGs 3, 6, 14, and 15.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

139-156

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Czigány, F. Ronkay, The coronavirus and plastics. Express Polym Lett., 14 (2020) 510–511.

DOI: 10.3144/expresspolymlett.2020.41

Google Scholar

[2] E.K. Orhorhoro, E.U. Emifoniye, S.O. Okuma, Prediction of the Tensile Strength of an Experimental Design Reinforce Polyvinyl Chloride Composite using Response Surface Methodology, Jordan J. Mech. Indust. Eng., 17(3) (2023) 403–412.

DOI: 10.59038/jjmie/170309

Google Scholar

[3] S. Abrahms-Kavunenko, Toward an anthropology of plastics, J. Mater. Cult., 28 (1) (2023) 3–23.

Google Scholar

[4] I. Adam, T.R. Walker, J.C. Bezerra, A. Calyton, Policies to reduce single-use plastic marine pollution in West Africa. Mar., Policy, 116 (2020) 103928.

DOI: 10.1016/j.marpol.2020.103928

Google Scholar

[5] E.K. Orhorhoro, A review of plastic waste management for a sustainable environment: Composition and approaches, European Journal of Sustainable Development Research, 9(3) (2025) em0314.

DOI: 10.29333/ejosdr/16359

Google Scholar

[6] A.A. Erameh, E.K. Orhorhoro, E.U. Emifoniye, Conceptualization and Design Analysis of a Pyrolysis Pilot Plant for the Management of Generated Plastic Waste Generation in Okada Town, Advances in Engineering Design Technology, 7(4) (2025), 83-103.

DOI: 10.30574/wjaets.2025.15.1.0416

Google Scholar

[7] E.U. Emifoniye, A.A. Erameh, E.K. Orhorhoro, Investigation of proximate and ultimate analysis of household generated plastic waste for feasible design of a pyrolysis pilot plant, World Journal of Advanced Engineering Technology and Sciences, 15(01) (2025) 2107-2118.

DOI: 10.30574/wjaets.2025.15.1.0416

Google Scholar

[8] S. Allen, D. Allen, K. Moss, G. Le Roux, V.R. Phoenix, J.E. Sonke, Examination of the ocean as a source for atmospheric microplastics. PLoS ONE, 15(5) (2020) e0232746.

DOI: 10.1371/journal.pone.0232746

Google Scholar

[9] E.U. Emifoniye, A.A. Erameh, E.K. Orhorhoro, P.E. Oyiboruona, A Machine Learning Approach for Pyrolysis of Plastic Waste: An Overview of Types, and Applications, International Journal of Scientific Research and Engineering Development, 8(3) (2025) 27-39.

Google Scholar

[10] M. Dokl, A. Copot, D. Krajnc, Y.V. Fan, Y.A. Vujanovi, K.B. Avisco, R.R. Tan, Z. Kravanja, L. Cucek, Global projections of plastic use, end-of-life fate and potential changes in consumption, reduction, recycling and replacement with bioplastics to 2050. Sustainable Production and Consumption, 51(2024) 498–518.

DOI: 10.1016/j.spc.2024.09.025

Google Scholar

[11] G.M.S.S. Gunawardhana, U.L.H.P. Perera, A.S. Ratnayake, Sources and fate of plastics into microplastics degradation and remediation methods. In: Maritime Accidents and Environmental Pollution - the X-Press Pearl Disaster: Causes, Consequences, and Lessons Learned 8 (2023) 155–170.

DOI: 10.1201/9781003314301-8

Google Scholar

[12] M.M. Hasan, M.G. Rasul, M.I. Jahirul, M.M.K. Khan, Modeling and process simulation of waste macadamia nutshell pyrolysis using Aspen Plus software. Energy Rep., 8 (2022) 429–37.

DOI: 10.1016/j.egyr.2022.10.323

Google Scholar

[13] M.M. Hasan, R. Haque, M.I. Jahirul, M.G. Rasul, Pyrolysis of plastic waste for sustainable energy Recovery: Technological advancements and environmental impacts, Energy Conversion and Management, 326 (2025) 119511.

DOI: 10.1016/j.enconman.2025.119511

Google Scholar

[14] E.K. Orhorhoro, E.U. Emifoniye, S.O. Okuma, Numerical Optimization of the Input Factors and Responses of an Experimental Design Reinforce PVC Composite, J. Adv. Mech. Eng. Appl., 4(2), (2023) 38-48.

DOI: 10.30880/jamea.2023.04.02.006

Google Scholar

[15] R. Reed, Plastic's edge over metal in medical device fabrication. https://www.plasticstoday.com/medical/plastics-edge-over-metal-medical-device-fabrication, 2022, Accessed 20 January 2023.

Google Scholar

[16] H.J.A. Hassan, J. Rasul, M. Samin, Effects of plastic waste materials on geotechnical properties of clayey soil. Transp, Infrast. Geotech., 8(3) (2021) 390–413 31.

DOI: 10.1007/s40515-020-00145-4

Google Scholar

[17] World Bank Report, Improving Solid Waste and Plastics Management in Lagos State: A Way Forward, 2024, Available at: https://documents.worldbank.org/en/publication/documents-reports/documentdetail/099101824172020522/p1761781eb744507f184b01f525451f4014. Accessed on 13 April, 2025.

DOI: 10.1596/42374

Google Scholar

[18] W. Li, M.M. Wright, Negative emission energy production technologies: a techno- economic and life cycle analyses review, Energy Technol., 8 (2020) 1900871.

DOI: 10.1002/ENTE.201900871

Google Scholar

[19] M. Kedzierski, B. Lechat, O. Sire, G. Le Maguer, V. Le Tilly, S. Bruzaud, Microplastic contamination of packaged meat: Occurrence and associated risks, Food Packag. Shelf Life, 24 (2020)100489.

DOI: 10.1016/j.fpsl.2020.100489

Google Scholar

[20] S. Liu, H. Chen, J.Z. Wang, L. Su, X.L. Wang, J.M. Zhu, W.L. Lan, The distribution of microplastics in water, sediment, and fish of the Dafeng River, a remote river in China, Ecotoxicol. Environ. Saf., 228 (2021) 113009.

DOI: 10.1016/j.ecoenv.2021.113009

Google Scholar

[21] J. Ma, X. Niu, D. Zhang, L. Lu, X. Ye, W. Deng, Y. Li, Z. Lin, High levels of microplastic pollution in aquaculture water of fish ponds in the Pearl River Estuary of Guangzhou, China, Sci. Total Environ, 744 (2020) 140679.

DOI: 10.1016/j.scitotenv.2020.140679

Google Scholar

[22] F. Wang, B. Wang, L. Duan, Y. Zhang, Y. Zhou, Q. Sui, D. Xu, H. Qu, G. Yu, Occurrence and distribution of microplastics in domestic, industrial, agricultural and aquacultural wastewater sources: a case study in Changzhou, China, Water Res., 182 (2020) 115956.

DOI: 10.1016/j.watres.2020.115956

Google Scholar

[23] E.K. Orhorhoro, R.I. Tamuno, J.C. Azuka, Development of Variance Model for the Prediction of Water Absorption and Thickness Swelling for an Experimental Designed PVC Reinforced Composite Pipes, Appl. Res. Smart Tech., 4(1) (2023) 16-24.

DOI: 10.23917/arstech.v4i1.1435

Google Scholar

[24] M. Shen, W. Huang, M. Chen, B. Song, G. Zeng, Y. Zhang, Microplastic crisis: un-ignorable contribution to global greenhouse gas emissions and climate change, J. Clean. Prod., 254 (2020) 120138.

DOI: 10.1016/j.jclepro.2020.120138

Google Scholar

[25] J. Gong, P. Xie, Research progress in sources, analytical methods, eco- environmental effects, and control measures of microplastics, Chemosphere, 2 (2020).

DOI: 10.1016/j.chemosphere.2020.126790

Google Scholar

[26] E.K. Orhorhoro, A.E. Ikpe, R.I. Tamuno, Performance Analysis of Locally Design Plastic Crushing Machine for Domestic and Industrial Use in Nigeria, Euro. J. Eng. Res. Sci., 1(2) (2016) 26-30.

DOI: 10.24018/ejeng.2016.1.2.153

Google Scholar

[27] R.E.J. Schnurr, V. Alboiu, M. Chaudhary, R.A. Corbett, M.E. Quanz, K. Sankar, H.S. Srain, V. Thavarajah, D. Xanthos, T.R. Walker, Reducing marine pollution from single-use plastics (SUPs): A review, Mar. Pollut. Bull., 137 (2018) 157–171.

DOI: 10.1016/j.marpolbul.2018.10.001

Google Scholar

[28] K. Conlon, A social systems approach to sustainable waste management: leverage points for plastic reduction in Colombo, Sri Lanka, Int J Sustainable Dev. World Ecol., (2021) 1–19.

DOI: 10.1080/13504509.2020.1867252

Google Scholar

[29] B.D. Vogt, K.K. Stokes, S.K., Kumar, Why is recycling of postconsumer plastics so challenging? ACS Appl., Polym. Mater., 3 (9) (2021) 4325–4346.

DOI: 10.1021/acsapm.1c00648

Google Scholar

[30] O. Erhinyodavwe, E.K. Orhorhoro, H. Amize, Categorization of Plastic Waste Generated for Conceptualization of Pyrolysis Plant Development in Agbor Town, Delta State, Nigeria, J. Appl. Sci. Environ. Manage., 29 (6) (2025) 1890-1897.

DOI: 10.4314/jasem.v29i6.20

Google Scholar

[31] W.U. Eze, I.C. Madufor, G.N. Onyeagoro, The effect of Kankara zeolite-Y-based catalyst on some physical properties of liquid fuel from mixed waste plastics (MWPs) pyrolysis, Polym. Bull, 77 (2020) 1399–1415.

DOI: 10.1007/s00289-019-02806-y

Google Scholar

[32] W.U. Eze, I.C. Madufor, G.N. Onyeagoro, Study on the effect of Kankara zeolite-Y-based catalyst on the chemical properties of liquid fuel from mixed waste plastics (MWPs) pyrolysis. Polym. Bull, 78 (2021) 377.

DOI: 10.1007/s00289-020-03116-4

Google Scholar

[33] J. Liu, Y. Li, X. Jia, K. Song, W. Hou, X. Zheng, Catalytic Pyrolysis of Poly (ethylene terephthalate) with Molybdenum Oxides for the Production of Olefins and Terephthalic Acid. Ind Eng Chem Res., 61 (2022) 5054–65.

DOI: 10.1021/acs.iecr.1c04743

Google Scholar

[34] H. Husin, M. Mahidin, M. Marwan, F. Nasution, E. Erdiwansyah, A. Ahmadi, S. Muchtar, F.T. Yani, R. Mamat, Conversion of polypropylene-derived crude pyrolytic oils using hydrothermal autoclave reactor and Ni/aceh natural zeolite as catalysts, Heliyon, 9 (2023).

DOI: 10.1016/j.heliyon.2023.e14880

Google Scholar

[35] M. Olivera, M. Musso, A. De Leon, E. Volonterio, A. Amaya, N. Tancredi, J. Bussi, Catalytic assessment of solid materials for the pyrolytic conversion of low-density polyethylene into fuel, Heliyon, 6 (2020).

DOI: 10.1016/j.heliyon.2020.e05080

Google Scholar

[36] O. Kelvin, A.U. Oluwaseun, E. Kennedy, B. Agbodekhe, K. Adama, E. Aluyor, Design, fabrication and operational evaluation of a Co-Pyrolysis system for waste-plastics derived fuels: a study of Edo North, Am. J. Eng. Appl. Sci., 15 (1) (2020) 4232–4238.

DOI: 10.3844/ajeassp.2022.32.42

Google Scholar

[37] T. Hassan, A.K. Srivastwa, S. Sarkar, G. Majumdar, Characterization of plastics and polymers: A comprehensive study, IOP Conf. Series, Mater. Sci. Eng., 1225 (2022) 012033.

DOI: 10.1088/1757-899x/1225/1/012033

Google Scholar

[38] A.B.R. Nurul Suhada, M. Asadullah, N.H. Malek, N.A.S. Amin, Fast pyrolysis of oil palm empty fruit bunch in an auger reactor: bio-oil composition and characteristics, IOP Conference Series, Mater Sci. Eng., 736 (2020).

DOI: 10.1088/1757-899x/736/3/032021

Google Scholar

[39] M. Sekar, V.K. Ponnusamy, A. Pugazhendhi, S. Nizetic, T. Praveenkumar, Production and utilization of pyrolysis oil from solid plastic wastes: A review on pyrolysis process and influence of reactors design, J. Environ Manage., 302 (2022) 114046.

DOI: 10.1016/j.jenvman.2021.114046

Google Scholar

[40] M.G. Davidson, R.A. Furlong, M.C. McManus, Developments in the life cycle assessment of chemical recycling of plastic waste-A review, J Clean Prod., 293 (2021) 126163.

DOI: 10.1016/j.jclepro.2021.126163

Google Scholar

[41] N. Sakthipriya, Plastic waste management: A road map to achieve circular economy and recent innovations in pyrolysis, Sci. Total Environ, 809 (2021) 151160.

DOI: 10.1016/j.scitotenv.2021.151160

Google Scholar

[42] D. Sivan, S. Zafar, R.V. Rohit, K. Satheeshkumar, V. Raj, K. Moorthy, S. Misnon, Ramakrishna, R. Jose, Towards circularity of plastics: A materials informatics perspective, Mater Today Sustain, (2024) 101001.

DOI: 10.1016/j.mtsust.2024.101001

Google Scholar

[43] Z. Jiang, Y. Liang, F. Guo, Y. Wang, R. Li, A. Tang, Y. Tu, X. Zhang, J. Wang, S. Li, L. Kong, Microwave-assisted Pyrolysis-A new way for the sustainable recycling and upgrading of plastic and bio mass: A review, ChemSusChem, 17(21) (2024) e202400129.

DOI: 10.1002/cssc.202400129

Google Scholar

[44] E. Bertran-Serra, S. Rodriguez-Miguel, Z. Li, Y. Ma, G. Farid, S. Chaitoglou, R. Amade, R. Ospina, J.L. Andújar, Advancements in plasma-enhanced chemical vapor deposition for producing verti cal graphene nanowalls, Nanomater 13(18) (2023) 2533.

DOI: 10.3390/nano13182533

Google Scholar

[45] J.O. Magnus, J.O. Eseigbe, Categorization of Urban Centres in Edo State, Nigeria. Journal of Business and Management, 3(6) (2025) 19-25.

Google Scholar

[46] M.O. Ezugwu Maryann, A.M. Eze, R.O. Azike Rowland, Monitoring and Assessment of Solid Waste Generated in Igbinedion University, Okada. Proceedings of Igbinedion University First Annual Research Day and Conference. Theme: Greening Academia/Industry Research Synergy: To Promote Sustainable Development Goals in Nigeria. Nigerian Journal of Engineering Science Research (NIJESR), (2021) 40-49.

DOI: 10.58806/ijmir.2025.v2i3n01

Google Scholar

[47] E.K. Orhorhoro, O. Oghoghorie, Assessment of Physicochemical Properties of Municipal Solid Waste Leachate from Dumpsites in Ovia North-East Local Government Area, Nigeria, Journal of Energy Technology and Environment, 5(4) (2023) 9-18.

Google Scholar

[48] K. Ragaert, L. Delva, K. van Geem, Mechanical and Chemical Recycling of Solid, Plastic Waste. Waste Manag., 69 (2017) 24–58.

DOI: 10.1016/j.wasman.2017.07.044

Google Scholar

[49] S. Pal, A. Kumar, A.K. Sharma, P.K. Ghodke, S. Pandey, A. Patel, Recent Advances in Catalytic Pyrolysis of Municipal Plastic Waste for the Production of Hydrocarbon Fuels, Processes, 10 (2022) 1497.

DOI: 10.3390/pr10081497

Google Scholar

[50] H. Dao Thi, M.R. Djokic, K.M. van Geem, Detailed Group-Type Characterization of Plastic-Waste Pyrolysis Oils: By Comprehensive Two-Dimensional Gas Chromatography Including Linear, Branched, and Di-Olefins, 8 (2021) 103.

DOI: 10.3390/separations8070103

Google Scholar

[51] M. Sukiran, F. Abnisa, W. Wan Daud, N. Abu Bakar, S. Loh, A review of torrefaction of oil palm solid wastes for biofuel production, Energy Conversion and Management, 149 (2017) 101-120.

DOI: 10.1016/j.enconman.2017.07.011

Google Scholar

[52] A. Shirazi, O. Börtin, L., Eklund, O. Lindqvist, The impact of mineral matter in coal on its combustion, and a new ap proach to the determination of the calorific value of coal, Fuel, 74(2) (1995) 247-251.

DOI: 10.1016/0016-2361(95)92661-o

Google Scholar

[53] A. Marcilla, M.I. Beltran, R. Navarro, Thermal and catalytic pyrolysis of polyethylene over HZSM5 and HUSY zeolites in a batch reactor under dynamic conditions, Appl Catal. B., 86 (2009) 78–86.

DOI: 10.1016/j.apcatb.2008.07.026

Google Scholar

[54] U. Hujuri, A.K. Ghoshal, S. Gumma, Modelling pyrolysis kinetics of plastic mixtures, Polym. Degrad. Stab., 93 (2008) 1832–1837.

DOI: 10.1016/j.polymdegradstab.2008.07.006

Google Scholar

[55] A.C.K. Chowlu, P.K. Reddy, A.K. Ghoshal, Pyrolytic decomposition and model-free kinetics analysis of mixture of polypropylene (PP) and low-density polyethylene (LDPE), Thermochim. Acta., 485 (2009) 20–25.

DOI: 10.1016/j.tca.2008.12.004

Google Scholar

[56] H. Nadia, D. Dassi, M.K.D. Djousse, H.G. Doukeng, A.M.D. Egbe, J.K. Tangka, T. Martin, Design of a pyrolyser model for the conversion of thermoplastics into fuels, Heliyon, 10(5) (2024) e26702.

DOI: 10.1016/j.heliyon.2024.e26702

Google Scholar

[57] M.A., Suarez, K. Januszewicz, M. Cortazar, G. Lopez, L. Santamaria, M. Olazar, M. Artetxe, M. Amutio, Selective H2 production from plastic waste through pyrolysis and in-line oxidative steam reforming, Energy, 302 (2024) 131762.

DOI: 10.1016/j.energy.2024.131762

Google Scholar

[58] A. Al-Rumaihi, M. Shahbaz, G. Mckay, H. Mackey, T. Al-Ansari, A review of pyrolysis technologies and feedstock: a blending approach for plastic and biomass towards optimum biochar yield, Renew. Sustain. Energy Rev., 167 (2022) 112715.

DOI: 10.1016/J.RSER.2022.112715

Google Scholar

[59] G. Albor, A. Mirkouei, A.G. McDonald, E. Struhs, F. Sotoudehnia, Fixed Bed Batch Slow Pyrolysis Process for Polystyrene Waste Recycling, Processes, 11 (2023) 1126.

DOI: 10.3390/pr11041126

Google Scholar

[60] C. Muhammad, J.A. Onwudili, P.T. Williams, Thermal Degradation of Real-World Waste Plastics and Simulated Mixed Plastics in a Two-Stage Pyrolysis–Catalysis Reactor for Fuel Production, Energy Fuel, 29 (2015) 2601–9.

DOI: 10.1021/ef502749h

Google Scholar

[61] A. Mukherjee, J.A. Okolie, A. Abdelrasoul, C. Niu, A.K. Dalai, Review of post combustion carbon dioxide capture technologies using activated carbon, J Environ Sci., 83 (2019) 46–63.

DOI: 10.1016/j.jes.2019.03.014

Google Scholar