[1]
T. Czigány, F. Ronkay, The coronavirus and plastics. Express Polym Lett., 14 (2020) 510–511.
DOI: 10.3144/expresspolymlett.2020.41
Google Scholar
[2]
E.K. Orhorhoro, E.U. Emifoniye, S.O. Okuma, Prediction of the Tensile Strength of an Experimental Design Reinforce Polyvinyl Chloride Composite using Response Surface Methodology, Jordan J. Mech. Indust. Eng., 17(3) (2023) 403–412.
DOI: 10.59038/jjmie/170309
Google Scholar
[3]
S. Abrahms-Kavunenko, Toward an anthropology of plastics, J. Mater. Cult., 28 (1) (2023) 3–23.
Google Scholar
[4]
I. Adam, T.R. Walker, J.C. Bezerra, A. Calyton, Policies to reduce single-use plastic marine pollution in West Africa. Mar., Policy, 116 (2020) 103928.
DOI: 10.1016/j.marpol.2020.103928
Google Scholar
[5]
E.K. Orhorhoro, A review of plastic waste management for a sustainable environment: Composition and approaches, European Journal of Sustainable Development Research, 9(3) (2025) em0314.
DOI: 10.29333/ejosdr/16359
Google Scholar
[6]
A.A. Erameh, E.K. Orhorhoro, E.U. Emifoniye, Conceptualization and Design Analysis of a Pyrolysis Pilot Plant for the Management of Generated Plastic Waste Generation in Okada Town, Advances in Engineering Design Technology, 7(4) (2025), 83-103.
DOI: 10.30574/wjaets.2025.15.1.0416
Google Scholar
[7]
E.U. Emifoniye, A.A. Erameh, E.K. Orhorhoro, Investigation of proximate and ultimate analysis of household generated plastic waste for feasible design of a pyrolysis pilot plant, World Journal of Advanced Engineering Technology and Sciences, 15(01) (2025) 2107-2118.
DOI: 10.30574/wjaets.2025.15.1.0416
Google Scholar
[8]
S. Allen, D. Allen, K. Moss, G. Le Roux, V.R. Phoenix, J.E. Sonke, Examination of the ocean as a source for atmospheric microplastics. PLoS ONE, 15(5) (2020) e0232746.
DOI: 10.1371/journal.pone.0232746
Google Scholar
[9]
E.U. Emifoniye, A.A. Erameh, E.K. Orhorhoro, P.E. Oyiboruona, A Machine Learning Approach for Pyrolysis of Plastic Waste: An Overview of Types, and Applications, International Journal of Scientific Research and Engineering Development, 8(3) (2025) 27-39.
Google Scholar
[10]
M. Dokl, A. Copot, D. Krajnc, Y.V. Fan, Y.A. Vujanovi, K.B. Avisco, R.R. Tan, Z. Kravanja, L. Cucek, Global projections of plastic use, end-of-life fate and potential changes in consumption, reduction, recycling and replacement with bioplastics to 2050. Sustainable Production and Consumption, 51(2024) 498–518.
DOI: 10.1016/j.spc.2024.09.025
Google Scholar
[11]
G.M.S.S. Gunawardhana, U.L.H.P. Perera, A.S. Ratnayake, Sources and fate of plastics into microplastics degradation and remediation methods. In: Maritime Accidents and Environmental Pollution - the X-Press Pearl Disaster: Causes, Consequences, and Lessons Learned 8 (2023) 155–170.
DOI: 10.1201/9781003314301-8
Google Scholar
[12]
M.M. Hasan, M.G. Rasul, M.I. Jahirul, M.M.K. Khan, Modeling and process simulation of waste macadamia nutshell pyrolysis using Aspen Plus software. Energy Rep., 8 (2022) 429–37.
DOI: 10.1016/j.egyr.2022.10.323
Google Scholar
[13]
M.M. Hasan, R. Haque, M.I. Jahirul, M.G. Rasul, Pyrolysis of plastic waste for sustainable energy Recovery: Technological advancements and environmental impacts, Energy Conversion and Management, 326 (2025) 119511.
DOI: 10.1016/j.enconman.2025.119511
Google Scholar
[14]
E.K. Orhorhoro, E.U. Emifoniye, S.O. Okuma, Numerical Optimization of the Input Factors and Responses of an Experimental Design Reinforce PVC Composite, J. Adv. Mech. Eng. Appl., 4(2), (2023) 38-48.
DOI: 10.30880/jamea.2023.04.02.006
Google Scholar
[15]
R. Reed, Plastic's edge over metal in medical device fabrication. https://www.plasticstoday.com/medical/plastics-edge-over-metal-medical-device-fabrication, 2022, Accessed 20 January 2023.
Google Scholar
[16]
H.J.A. Hassan, J. Rasul, M. Samin, Effects of plastic waste materials on geotechnical properties of clayey soil. Transp, Infrast. Geotech., 8(3) (2021) 390–413 31.
DOI: 10.1007/s40515-020-00145-4
Google Scholar
[17]
World Bank Report, Improving Solid Waste and Plastics Management in Lagos State: A Way Forward, 2024, Available at: https://documents.worldbank.org/en/publication/documents-reports/documentdetail/099101824172020522/p1761781eb744507f184b01f525451f4014. Accessed on 13 April, 2025.
DOI: 10.1596/42374
Google Scholar
[18]
W. Li, M.M. Wright, Negative emission energy production technologies: a techno- economic and life cycle analyses review, Energy Technol., 8 (2020) 1900871.
DOI: 10.1002/ENTE.201900871
Google Scholar
[19]
M. Kedzierski, B. Lechat, O. Sire, G. Le Maguer, V. Le Tilly, S. Bruzaud, Microplastic contamination of packaged meat: Occurrence and associated risks, Food Packag. Shelf Life, 24 (2020)100489.
DOI: 10.1016/j.fpsl.2020.100489
Google Scholar
[20]
S. Liu, H. Chen, J.Z. Wang, L. Su, X.L. Wang, J.M. Zhu, W.L. Lan, The distribution of microplastics in water, sediment, and fish of the Dafeng River, a remote river in China, Ecotoxicol. Environ. Saf., 228 (2021) 113009.
DOI: 10.1016/j.ecoenv.2021.113009
Google Scholar
[21]
J. Ma, X. Niu, D. Zhang, L. Lu, X. Ye, W. Deng, Y. Li, Z. Lin, High levels of microplastic pollution in aquaculture water of fish ponds in the Pearl River Estuary of Guangzhou, China, Sci. Total Environ, 744 (2020) 140679.
DOI: 10.1016/j.scitotenv.2020.140679
Google Scholar
[22]
F. Wang, B. Wang, L. Duan, Y. Zhang, Y. Zhou, Q. Sui, D. Xu, H. Qu, G. Yu, Occurrence and distribution of microplastics in domestic, industrial, agricultural and aquacultural wastewater sources: a case study in Changzhou, China, Water Res., 182 (2020) 115956.
DOI: 10.1016/j.watres.2020.115956
Google Scholar
[23]
E.K. Orhorhoro, R.I. Tamuno, J.C. Azuka, Development of Variance Model for the Prediction of Water Absorption and Thickness Swelling for an Experimental Designed PVC Reinforced Composite Pipes, Appl. Res. Smart Tech., 4(1) (2023) 16-24.
DOI: 10.23917/arstech.v4i1.1435
Google Scholar
[24]
M. Shen, W. Huang, M. Chen, B. Song, G. Zeng, Y. Zhang, Microplastic crisis: un-ignorable contribution to global greenhouse gas emissions and climate change, J. Clean. Prod., 254 (2020) 120138.
DOI: 10.1016/j.jclepro.2020.120138
Google Scholar
[25]
J. Gong, P. Xie, Research progress in sources, analytical methods, eco- environmental effects, and control measures of microplastics, Chemosphere, 2 (2020).
DOI: 10.1016/j.chemosphere.2020.126790
Google Scholar
[26]
E.K. Orhorhoro, A.E. Ikpe, R.I. Tamuno, Performance Analysis of Locally Design Plastic Crushing Machine for Domestic and Industrial Use in Nigeria, Euro. J. Eng. Res. Sci., 1(2) (2016) 26-30.
DOI: 10.24018/ejeng.2016.1.2.153
Google Scholar
[27]
R.E.J. Schnurr, V. Alboiu, M. Chaudhary, R.A. Corbett, M.E. Quanz, K. Sankar, H.S. Srain, V. Thavarajah, D. Xanthos, T.R. Walker, Reducing marine pollution from single-use plastics (SUPs): A review, Mar. Pollut. Bull., 137 (2018) 157–171.
DOI: 10.1016/j.marpolbul.2018.10.001
Google Scholar
[28]
K. Conlon, A social systems approach to sustainable waste management: leverage points for plastic reduction in Colombo, Sri Lanka, Int J Sustainable Dev. World Ecol., (2021) 1–19.
DOI: 10.1080/13504509.2020.1867252
Google Scholar
[29]
B.D. Vogt, K.K. Stokes, S.K., Kumar, Why is recycling of postconsumer plastics so challenging? ACS Appl., Polym. Mater., 3 (9) (2021) 4325–4346.
DOI: 10.1021/acsapm.1c00648
Google Scholar
[30]
O. Erhinyodavwe, E.K. Orhorhoro, H. Amize, Categorization of Plastic Waste Generated for Conceptualization of Pyrolysis Plant Development in Agbor Town, Delta State, Nigeria, J. Appl. Sci. Environ. Manage., 29 (6) (2025) 1890-1897.
DOI: 10.4314/jasem.v29i6.20
Google Scholar
[31]
W.U. Eze, I.C. Madufor, G.N. Onyeagoro, The effect of Kankara zeolite-Y-based catalyst on some physical properties of liquid fuel from mixed waste plastics (MWPs) pyrolysis, Polym. Bull, 77 (2020) 1399–1415.
DOI: 10.1007/s00289-019-02806-y
Google Scholar
[32]
W.U. Eze, I.C. Madufor, G.N. Onyeagoro, Study on the effect of Kankara zeolite-Y-based catalyst on the chemical properties of liquid fuel from mixed waste plastics (MWPs) pyrolysis. Polym. Bull, 78 (2021) 377.
DOI: 10.1007/s00289-020-03116-4
Google Scholar
[33]
J. Liu, Y. Li, X. Jia, K. Song, W. Hou, X. Zheng, Catalytic Pyrolysis of Poly (ethylene terephthalate) with Molybdenum Oxides for the Production of Olefins and Terephthalic Acid. Ind Eng Chem Res., 61 (2022) 5054–65.
DOI: 10.1021/acs.iecr.1c04743
Google Scholar
[34]
H. Husin, M. Mahidin, M. Marwan, F. Nasution, E. Erdiwansyah, A. Ahmadi, S. Muchtar, F.T. Yani, R. Mamat, Conversion of polypropylene-derived crude pyrolytic oils using hydrothermal autoclave reactor and Ni/aceh natural zeolite as catalysts, Heliyon, 9 (2023).
DOI: 10.1016/j.heliyon.2023.e14880
Google Scholar
[35]
M. Olivera, M. Musso, A. De Leon, E. Volonterio, A. Amaya, N. Tancredi, J. Bussi, Catalytic assessment of solid materials for the pyrolytic conversion of low-density polyethylene into fuel, Heliyon, 6 (2020).
DOI: 10.1016/j.heliyon.2020.e05080
Google Scholar
[36]
O. Kelvin, A.U. Oluwaseun, E. Kennedy, B. Agbodekhe, K. Adama, E. Aluyor, Design, fabrication and operational evaluation of a Co-Pyrolysis system for waste-plastics derived fuels: a study of Edo North, Am. J. Eng. Appl. Sci., 15 (1) (2020) 4232–4238.
DOI: 10.3844/ajeassp.2022.32.42
Google Scholar
[37]
T. Hassan, A.K. Srivastwa, S. Sarkar, G. Majumdar, Characterization of plastics and polymers: A comprehensive study, IOP Conf. Series, Mater. Sci. Eng., 1225 (2022) 012033.
DOI: 10.1088/1757-899x/1225/1/012033
Google Scholar
[38]
A.B.R. Nurul Suhada, M. Asadullah, N.H. Malek, N.A.S. Amin, Fast pyrolysis of oil palm empty fruit bunch in an auger reactor: bio-oil composition and characteristics, IOP Conference Series, Mater Sci. Eng., 736 (2020).
DOI: 10.1088/1757-899x/736/3/032021
Google Scholar
[39]
M. Sekar, V.K. Ponnusamy, A. Pugazhendhi, S. Nizetic, T. Praveenkumar, Production and utilization of pyrolysis oil from solid plastic wastes: A review on pyrolysis process and influence of reactors design, J. Environ Manage., 302 (2022) 114046.
DOI: 10.1016/j.jenvman.2021.114046
Google Scholar
[40]
M.G. Davidson, R.A. Furlong, M.C. McManus, Developments in the life cycle assessment of chemical recycling of plastic waste-A review, J Clean Prod., 293 (2021) 126163.
DOI: 10.1016/j.jclepro.2021.126163
Google Scholar
[41]
N. Sakthipriya, Plastic waste management: A road map to achieve circular economy and recent innovations in pyrolysis, Sci. Total Environ, 809 (2021) 151160.
DOI: 10.1016/j.scitotenv.2021.151160
Google Scholar
[42]
D. Sivan, S. Zafar, R.V. Rohit, K. Satheeshkumar, V. Raj, K. Moorthy, S. Misnon, Ramakrishna, R. Jose, Towards circularity of plastics: A materials informatics perspective, Mater Today Sustain, (2024) 101001.
DOI: 10.1016/j.mtsust.2024.101001
Google Scholar
[43]
Z. Jiang, Y. Liang, F. Guo, Y. Wang, R. Li, A. Tang, Y. Tu, X. Zhang, J. Wang, S. Li, L. Kong, Microwave-assisted Pyrolysis-A new way for the sustainable recycling and upgrading of plastic and bio mass: A review, ChemSusChem, 17(21) (2024) e202400129.
DOI: 10.1002/cssc.202400129
Google Scholar
[44]
E. Bertran-Serra, S. Rodriguez-Miguel, Z. Li, Y. Ma, G. Farid, S. Chaitoglou, R. Amade, R. Ospina, J.L. Andújar, Advancements in plasma-enhanced chemical vapor deposition for producing verti cal graphene nanowalls, Nanomater 13(18) (2023) 2533.
DOI: 10.3390/nano13182533
Google Scholar
[45]
J.O. Magnus, J.O. Eseigbe, Categorization of Urban Centres in Edo State, Nigeria. Journal of Business and Management, 3(6) (2025) 19-25.
Google Scholar
[46]
M.O. Ezugwu Maryann, A.M. Eze, R.O. Azike Rowland, Monitoring and Assessment of Solid Waste Generated in Igbinedion University, Okada. Proceedings of Igbinedion University First Annual Research Day and Conference. Theme: Greening Academia/Industry Research Synergy: To Promote Sustainable Development Goals in Nigeria. Nigerian Journal of Engineering Science Research (NIJESR), (2021) 40-49.
DOI: 10.58806/ijmir.2025.v2i3n01
Google Scholar
[47]
E.K. Orhorhoro, O. Oghoghorie, Assessment of Physicochemical Properties of Municipal Solid Waste Leachate from Dumpsites in Ovia North-East Local Government Area, Nigeria, Journal of Energy Technology and Environment, 5(4) (2023) 9-18.
Google Scholar
[48]
K. Ragaert, L. Delva, K. van Geem, Mechanical and Chemical Recycling of Solid, Plastic Waste. Waste Manag., 69 (2017) 24–58.
DOI: 10.1016/j.wasman.2017.07.044
Google Scholar
[49]
S. Pal, A. Kumar, A.K. Sharma, P.K. Ghodke, S. Pandey, A. Patel, Recent Advances in Catalytic Pyrolysis of Municipal Plastic Waste for the Production of Hydrocarbon Fuels, Processes, 10 (2022) 1497.
DOI: 10.3390/pr10081497
Google Scholar
[50]
H. Dao Thi, M.R. Djokic, K.M. van Geem, Detailed Group-Type Characterization of Plastic-Waste Pyrolysis Oils: By Comprehensive Two-Dimensional Gas Chromatography Including Linear, Branched, and Di-Olefins, 8 (2021) 103.
DOI: 10.3390/separations8070103
Google Scholar
[51]
M. Sukiran, F. Abnisa, W. Wan Daud, N. Abu Bakar, S. Loh, A review of torrefaction of oil palm solid wastes for biofuel production, Energy Conversion and Management, 149 (2017) 101-120.
DOI: 10.1016/j.enconman.2017.07.011
Google Scholar
[52]
A. Shirazi, O. Börtin, L., Eklund, O. Lindqvist, The impact of mineral matter in coal on its combustion, and a new ap proach to the determination of the calorific value of coal, Fuel, 74(2) (1995) 247-251.
DOI: 10.1016/0016-2361(95)92661-o
Google Scholar
[53]
A. Marcilla, M.I. Beltran, R. Navarro, Thermal and catalytic pyrolysis of polyethylene over HZSM5 and HUSY zeolites in a batch reactor under dynamic conditions, Appl Catal. B., 86 (2009) 78–86.
DOI: 10.1016/j.apcatb.2008.07.026
Google Scholar
[54]
U. Hujuri, A.K. Ghoshal, S. Gumma, Modelling pyrolysis kinetics of plastic mixtures, Polym. Degrad. Stab., 93 (2008) 1832–1837.
DOI: 10.1016/j.polymdegradstab.2008.07.006
Google Scholar
[55]
A.C.K. Chowlu, P.K. Reddy, A.K. Ghoshal, Pyrolytic decomposition and model-free kinetics analysis of mixture of polypropylene (PP) and low-density polyethylene (LDPE), Thermochim. Acta., 485 (2009) 20–25.
DOI: 10.1016/j.tca.2008.12.004
Google Scholar
[56]
H. Nadia, D. Dassi, M.K.D. Djousse, H.G. Doukeng, A.M.D. Egbe, J.K. Tangka, T. Martin, Design of a pyrolyser model for the conversion of thermoplastics into fuels, Heliyon, 10(5) (2024) e26702.
DOI: 10.1016/j.heliyon.2024.e26702
Google Scholar
[57]
M.A., Suarez, K. Januszewicz, M. Cortazar, G. Lopez, L. Santamaria, M. Olazar, M. Artetxe, M. Amutio, Selective H2 production from plastic waste through pyrolysis and in-line oxidative steam reforming, Energy, 302 (2024) 131762.
DOI: 10.1016/j.energy.2024.131762
Google Scholar
[58]
A. Al-Rumaihi, M. Shahbaz, G. Mckay, H. Mackey, T. Al-Ansari, A review of pyrolysis technologies and feedstock: a blending approach for plastic and biomass towards optimum biochar yield, Renew. Sustain. Energy Rev., 167 (2022) 112715.
DOI: 10.1016/J.RSER.2022.112715
Google Scholar
[59]
G. Albor, A. Mirkouei, A.G. McDonald, E. Struhs, F. Sotoudehnia, Fixed Bed Batch Slow Pyrolysis Process for Polystyrene Waste Recycling, Processes, 11 (2023) 1126.
DOI: 10.3390/pr11041126
Google Scholar
[60]
C. Muhammad, J.A. Onwudili, P.T. Williams, Thermal Degradation of Real-World Waste Plastics and Simulated Mixed Plastics in a Two-Stage Pyrolysis–Catalysis Reactor for Fuel Production, Energy Fuel, 29 (2015) 2601–9.
DOI: 10.1021/ef502749h
Google Scholar
[61]
A. Mukherjee, J.A. Okolie, A. Abdelrasoul, C. Niu, A.K. Dalai, Review of post combustion carbon dioxide capture technologies using activated carbon, J Environ Sci., 83 (2019) 46–63.
DOI: 10.1016/j.jes.2019.03.014
Google Scholar