[1]
H. J. Fan, P. Werner, and M. Zacharias, Semiconductor nanowires: from self-organization to patterned growth, Small 2, p.700, (2006).
DOI: 10.1002/smll.200500495
Google Scholar
[2]
J. Xiang, W. Lu, Y. J. Hu, Y. Wu, H. Yan, and C. M. Lieber, Ge/Si nanowire heterostructures as high-performance field-effect transistors, Nature 441, p.489, (2006).
DOI: 10.1038/nature04796
Google Scholar
[3]
G. C. Liang, J. Xiang, N. Kharche, G. Klimeck, C. M. Lieber, M. Lundstrom, Performance analysis of a Ge/Si core/shell nanowire field-effect transistor, Nano Lett. 7, p.642, (2007).
DOI: 10.1021/nl062596f
Google Scholar
[4]
Y. J. Hu, H. O. H. Churchill, D. J. Reilly, J. Xiang, C. M. Lieber, C. M. Marcus, A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor, Nature Nanotechnol. 2, p.622, (2007).
DOI: 10.1038/nnano.2007.302
Google Scholar
[5]
Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, C. M. Lieber, Logic gates and computation from assembled nanowire building blocks, Science, 294, p.1313, (2001).
DOI: 10.1126/science.1066192
Google Scholar
[6]
J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, Control of thickness and orientation of solution-grown silicon nanowires, Science 287, p.1471, (2000).
DOI: 10.1126/science.287.5457.1471
Google Scholar
[7]
C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol. 3, p.31, (2008).
DOI: 10.1038/nnano.2007.411
Google Scholar
[8]
C. K. Chan, X. F. Zhang, and Y. Cui, High Capacity Li-ion Battery Anodes Using Ge Nanowires, Nano Lett. 8, p.307, (2008).
DOI: 10.1021/nl0727157
Google Scholar
[9]
A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, D. Yang, Enhanced thermoelectric efficiency of rough silicon nanowires, Nature, 451, p.163, (2008).
DOI: 10.1038/nature06381
Google Scholar
[10]
B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, J. Huang, C. M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources, Nature, 449, p.885, (2007).
DOI: 10.1038/nature06181
Google Scholar
[11]
Y. Hwang, A. Bukai, P. D. Yang, High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity, Nano. Lett. 9, p.410, (2009).
DOI: 10.1021/nl8032763
Google Scholar
[12]
E. C. Garnett, P. Yang, Silicon Nanowire Radial p-n Junction Solar Cells, J. Am. Chem. Soc. 130, PP. 9224, (2008).
DOI: 10.1021/ja8032907
Google Scholar
[13]
Z. Li, Y. Chen, X. Li, T. I. Kamins, K. Nauka, R. S. Williams, Sequence-specific label-free DNA sensors based on silicon nanowires, Nano Lett. 4, p.245, (2004).
DOI: 10.1021/nl034958e
Google Scholar
[14]
Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Nanowire Nanosensors for Highly-Sensitive, Selective and Integrated Detection of Biological and Chemical Species, , Science 293, p.1289, (2001).
DOI: 10.1126/science.1062711
Google Scholar
[15]
G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, C. M. Lieber, Multiplexed Electrical Detection of Cancer Markers with Nanowire Sensor Arrays, Nat. Biotechnol. 23, p.1294, (2005).
DOI: 10.1038/nbt1138
Google Scholar
[16]
F. Patolsky, B. P. Timko, G. Yu, Y. Fang, A. B. Greytak, G. Zheng, C. M. Lieber, Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays, 313, p.1100, (2006).
DOI: 10.1126/science.1128640
Google Scholar
[17]
C.B. Li, K. Usami, H. Mizuta, S. Oda, Controlled Ge Nanowires Growth on Patterned Au Catalyst Substrate, Proceeding of 2008 IEEE Si Nanoelectronics workshop, 2008, 147.
DOI: 10.1109/snw.2008.5418417
Google Scholar
[18]
C.B. Li, K. Usami, H. Mizuta, S. Oda, Vapor-Liquid-Solid Synthesis of Ge Nanowire on H-terminated Si Substrate, AIP Conference Proceedings, 2010, 1199, 11.
DOI: 10.1063/1.3295325
Google Scholar
[19]
W. N. Li, Y. S. Ding, J. Yuan, S. Gomez, S. L. Suib, F. S. Galasso, J. F. DiCarlo, J. Phys. Chem. B 109, 3291, (2005).
Google Scholar
[20]
J. B. Hannon, S. Kodambaka, F. M. Ross, R. M. Tromp, Nature 440, 69, (2006).
Google Scholar
[21]
C. B. Li, K. Usami, T. Muraki, H. Mizuta and S. Oda, Impacts of surface condition on VLS growth of Ge nanowires on Si(100) substrate, ,Appl. Phys. Lett., 93, p.041917, (2008).
DOI: 10.1063/1.2968201
Google Scholar
[22]
C. B. Li, K. Usami, H. Mizuta, S. Oda. Vapor-solid-solid radial growth of Ge nanowires, ,J. Appl. Phys. 106, p.046102, (2009).
DOI: 10.1063/1.3204471
Google Scholar
[23]
C.B. Li , K. Usami, G. Yamahata, Y. Tsuchiya, H. Mizuta, S. Oda, Position-controllable Ge Nanowires growth on Patterned Au Catalyst Substrate, , Applied Physics Express, 2, p.015004, (2009).
DOI: 10.1143/apex.2.015004
Google Scholar
[24]
L. T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Appl. Phys. Lett. 57, p.1046, (1990).
DOI: 10.1063/1.103561
Google Scholar
[25]
M. L. Zhang, K. Q. Peng, X. Fan, J. S. Jie, R. Q. Zhang, S. T. Lee, N. B. Wong, Preparation of Large-Area Uniform Silicon Nanowires Arrays through Metal-Assisted Chemical Etching, J. Phys. Chem. C 112, p.4444, (2008).
DOI: 10.1021/jp077053o
Google Scholar
[26]
Y. Q. Qu, L. Liao, Y. J. Li, H. Zhang, Y. Huang and X. F. Duan, Electrically conductive and optically active porous silicon nanowires, Nano Lett. 9, p.4539, (2009).
DOI: 10.1021/nl903030h
Google Scholar
[27]
Z. P. Huang, H. Fang, J. Zhu, Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density, Adv. Mater., 19, p.744, (2007).
DOI: 10.1002/adma.200600892
Google Scholar
[28]
K. Q. Peng, Y. Wu, H. Fang, X. Y. Zhang, Y. Xu, J. Zhu, Uniform, Axial-Orientation Alignment of One-Dimensional Single-Crystal Silicon NanostructureArrays, Angew. Chem., Int. Ed. 44, p.2737, (2005).
DOI: 10.1002/anie.200462995
Google Scholar
[29]
K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, J. Zhu, Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles, Adv. Funct. Mater. 16, p.387, (2006).
DOI: 10.1002/adfm.200500392
Google Scholar
[30]
K. Q. Peng, Y. Xu, Y. Wu, Y. J. Yan, S. T. Lee, J. Zhu, Aligned Single-Crystalline Si NanowireArrays for Photovoltaic Applications, Small 1, p.1062, (2005).
DOI: 10.1002/smll.200500137
Google Scholar
[31]
Y. F. Zhang, Y. H. Tang, N. Wang, D. P. Yu, C. S. Lee, I. Bello, S. T. Lee, Silicon nanowires prepared by laser ablation at high temperature, Appl. Phys. Lett. 72, p.1835, (1998).
DOI: 10.1063/1.121199
Google Scholar
[32]
H. Pan, S. Lim, C. Poh, H. Sun, X. Wu, Y. Feng, J. Lin, Growth of Si nanowires by thermalevaporation, Nanotechnology 16, p.417, (2005).
DOI: 10.1088/0957-4484/16/4/014
Google Scholar
[33]
C. B. Li, K. Fobelets, M. S. Tymieniecki, M. Hamayun, Z. A. K. Durrani, accepted to ECS, Las Vegas, USA (2010).
Google Scholar