Study of Two-Step Electroless Etched Si Nanowire Arrays

Article Preview

Abstract:

The influence of the nucleation process of Ag particles on the formation of Si nanowire arrays is investigated by two-stage electroless chemical etching. The dimensions of the Ag particles formed in the first stage of the process play an important role in the formation of the Si nanowires. The nucleation and etch result are analysed using SEM. The electrical properties of the resulting Si NW arrays are also studied.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3284-3288

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. J. Fan, P. Werner, and M. Zacharias, Semiconductor nanowires: from self-organization to patterned growth, Small 2, p.700, (2006).

DOI: 10.1002/smll.200500495

Google Scholar

[2] J. Xiang, W. Lu, Y. J. Hu, Y. Wu, H. Yan, and C. M. Lieber, Ge/Si nanowire heterostructures as high-performance field-effect transistors, Nature 441, p.489, (2006).

DOI: 10.1038/nature04796

Google Scholar

[3] G. C. Liang, J. Xiang, N. Kharche, G. Klimeck, C. M. Lieber, M. Lundstrom, Performance analysis of a Ge/Si core/shell nanowire field-effect transistor, Nano Lett. 7, p.642, (2007).

DOI: 10.1021/nl062596f

Google Scholar

[4] Y. J. Hu, H. O. H. Churchill, D. J. Reilly, J. Xiang, C. M. Lieber, C. M. Marcus, A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor, Nature Nanotechnol. 2, p.622, (2007).

DOI: 10.1038/nnano.2007.302

Google Scholar

[5] Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, C. M. Lieber, Logic gates and computation from assembled nanowire building blocks, Science, 294, p.1313, (2001).

DOI: 10.1126/science.1066192

Google Scholar

[6] J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, Control of thickness and orientation of solution-grown silicon nanowires, Science 287, p.1471, (2000).

DOI: 10.1126/science.287.5457.1471

Google Scholar

[7] C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol. 3, p.31, (2008).

DOI: 10.1038/nnano.2007.411

Google Scholar

[8] C. K. Chan, X. F. Zhang, and Y. Cui, High Capacity Li-ion Battery Anodes Using Ge Nanowires, Nano Lett. 8, p.307, (2008).

DOI: 10.1021/nl0727157

Google Scholar

[9] A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, D. Yang, Enhanced thermoelectric efficiency of rough silicon nanowires, Nature, 451, p.163, (2008).

DOI: 10.1038/nature06381

Google Scholar

[10] B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, J. Huang, C. M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources, Nature, 449, p.885, (2007).

DOI: 10.1038/nature06181

Google Scholar

[11] Y. Hwang, A. Bukai, P. D. Yang, High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity, Nano. Lett. 9, p.410, (2009).

DOI: 10.1021/nl8032763

Google Scholar

[12] E. C. Garnett, P. Yang, Silicon Nanowire Radial p-n Junction Solar Cells, J. Am. Chem. Soc. 130, PP. 9224, (2008).

DOI: 10.1021/ja8032907

Google Scholar

[13] Z. Li, Y. Chen, X. Li, T. I. Kamins, K. Nauka, R. S. Williams, Sequence-specific label-free DNA sensors based on silicon nanowires, Nano Lett. 4, p.245, (2004).

DOI: 10.1021/nl034958e

Google Scholar

[14] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Nanowire Nanosensors for Highly-Sensitive, Selective and Integrated Detection of Biological and Chemical Species, , Science 293, p.1289, (2001).

DOI: 10.1126/science.1062711

Google Scholar

[15] G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, C. M. Lieber, Multiplexed Electrical Detection of Cancer Markers with Nanowire Sensor Arrays, Nat. Biotechnol. 23, p.1294, (2005).

DOI: 10.1038/nbt1138

Google Scholar

[16] F. Patolsky, B. P. Timko, G. Yu, Y. Fang, A. B. Greytak, G. Zheng, C. M. Lieber, Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays, 313, p.1100, (2006).

DOI: 10.1126/science.1128640

Google Scholar

[17] C.B. Li, K. Usami, H. Mizuta, S. Oda, Controlled Ge Nanowires Growth on Patterned Au Catalyst Substrate, Proceeding of 2008 IEEE Si Nanoelectronics workshop, 2008, 147.

DOI: 10.1109/snw.2008.5418417

Google Scholar

[18] C.B. Li, K. Usami, H. Mizuta, S. Oda, Vapor-Liquid-Solid Synthesis of Ge Nanowire on H-terminated Si Substrate, AIP Conference Proceedings, 2010, 1199, 11.

DOI: 10.1063/1.3295325

Google Scholar

[19] W. N. Li, Y. S. Ding, J. Yuan, S. Gomez, S. L. Suib, F. S. Galasso, J. F. DiCarlo, J. Phys. Chem. B 109, 3291, (2005).

Google Scholar

[20] J. B. Hannon, S. Kodambaka, F. M. Ross, R. M. Tromp, Nature 440, 69, (2006).

Google Scholar

[21] C. B. Li, K. Usami, T. Muraki, H. Mizuta and S. Oda, Impacts of surface condition on VLS growth of Ge nanowires on Si(100) substrate, ,Appl. Phys. Lett., 93, p.041917, (2008).

DOI: 10.1063/1.2968201

Google Scholar

[22] C. B. Li, K. Usami, H. Mizuta, S. Oda. Vapor-solid-solid radial growth of Ge nanowires, ,J. Appl. Phys. 106, p.046102, (2009).

DOI: 10.1063/1.3204471

Google Scholar

[23] C.B. Li , K. Usami, G. Yamahata, Y. Tsuchiya, H. Mizuta, S. Oda, Position-controllable Ge Nanowires growth on Patterned Au Catalyst Substrate, , Applied Physics Express, 2, p.015004, (2009).

DOI: 10.1143/apex.2.015004

Google Scholar

[24] L. T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Appl. Phys. Lett. 57, p.1046, (1990).

DOI: 10.1063/1.103561

Google Scholar

[25] M. L. Zhang, K. Q. Peng, X. Fan, J. S. Jie, R. Q. Zhang, S. T. Lee, N. B. Wong, Preparation of Large-Area Uniform Silicon Nanowires Arrays through Metal-Assisted Chemical Etching, J. Phys. Chem. C 112, p.4444, (2008).

DOI: 10.1021/jp077053o

Google Scholar

[26] Y. Q. Qu, L. Liao, Y. J. Li, H. Zhang, Y. Huang and X. F. Duan, Electrically conductive and optically active porous silicon nanowires, Nano Lett. 9, p.4539, (2009).

DOI: 10.1021/nl903030h

Google Scholar

[27] Z. P. Huang, H. Fang, J. Zhu, Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density, Adv. Mater., 19, p.744, (2007).

DOI: 10.1002/adma.200600892

Google Scholar

[28] K. Q. Peng, Y. Wu, H. Fang, X. Y. Zhang, Y. Xu, J. Zhu, Uniform, Axial-Orientation Alignment of One-Dimensional Single-Crystal Silicon NanostructureArrays, Angew. Chem., Int. Ed. 44, p.2737, (2005).

DOI: 10.1002/anie.200462995

Google Scholar

[29] K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, J. Zhu, Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles, Adv. Funct. Mater. 16, p.387, (2006).

DOI: 10.1002/adfm.200500392

Google Scholar

[30] K. Q. Peng, Y. Xu, Y. Wu, Y. J. Yan, S. T. Lee, J. Zhu, Aligned Single-Crystalline Si NanowireArrays for Photovoltaic Applications, Small 1, p.1062, (2005).

DOI: 10.1002/smll.200500137

Google Scholar

[31] Y. F. Zhang, Y. H. Tang, N. Wang, D. P. Yu, C. S. Lee, I. Bello, S. T. Lee, Silicon nanowires prepared by laser ablation at high temperature, Appl. Phys. Lett. 72, p.1835, (1998).

DOI: 10.1063/1.121199

Google Scholar

[32] H. Pan, S. Lim, C. Poh, H. Sun, X. Wu, Y. Feng, J. Lin, Growth of Si nanowires by thermalevaporation, Nanotechnology 16, p.417, (2005).

DOI: 10.1088/0957-4484/16/4/014

Google Scholar

[33] C. B. Li, K. Fobelets, M. S. Tymieniecki, M. Hamayun, Z. A. K. Durrani, accepted to ECS, Las Vegas, USA (2010).

Google Scholar