Applied Mechanics and Materials
Vol. 238
Vol. 238
Applied Mechanics and Materials
Vols. 236-237
Vols. 236-237
Applied Mechanics and Materials
Vol. 235
Vol. 235
Applied Mechanics and Materials
Vol. 234
Vol. 234
Applied Mechanics and Materials
Vol. 233
Vol. 233
Applied Mechanics and Materials
Vol. 232
Vol. 232
Applied Mechanics and Materials
Vols. 229-231
Vols. 229-231
Applied Mechanics and Materials
Vols. 226-228
Vols. 226-228
Applied Mechanics and Materials
Vol. 225
Vol. 225
Applied Mechanics and Materials
Vol. 224
Vol. 224
Applied Mechanics and Materials
Vols. 220-223
Vols. 220-223
Applied Mechanics and Materials
Vols. 217-219
Vols. 217-219
Applied Mechanics and Materials
Vols. 215-216
Vols. 215-216
Applied Mechanics and Materials Vols. 229-231
Paper Title Page
Abstract: In this paper, we introduced dbcube topology for Network-on Chips(NoC). We predicted the dbcube topology has high power and low latency comparing to other topologies, and in particular mesh topology. By using xmulator simulator,we compared power and latency of this topologyto mesh topology. Finally, it is demonstrated that the network has higher power and lower latency than the mesh topology.
219
Abstract: Water-soluble polyaniline blend poly(sodium 4-styrenesulfonate), (PANI.PSS) was used to disperse multiwalled carbon nanotubes (MWCNTs) by noncovalent surface modification. The anionic of PANI.PSS solution was prepared by interfacial polymerization of aniline monomer in the presence of PSS as the blending reagent to provide water solubility. The optimal conditions to prepare stable modified MWCNTs/PANI.PSS aqueous dispersions are presented. The interaction of MWCNTs and PANI.PSS have been investigated and explained according to the result of UV-Vis spectroscopy and zeta potential analysis. The MWCNTs/PANI.PSS complex solution was further confirmed more evidence by Transmission electron microscopy (TEM). Results showed that the MWCNTs dispersed with PANI.PSS are highly dispersible in water, which open up the new possibilities for the fabrication of composite films.
223
Abstract: This paper report the effect of milling time on the structural properties of TiO2 nanopowder prepared from sol-gel milling process. The synthesized TiO2 nanopowders have been characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and Fourier transform infrared (FTIR). XRD result reveals that the TiO2 nanopowder in anatase phase is detected. The morphology of the TiO2 nanopowder change obviously with the increase of the milling time. Further, FTIR results found the sharp peaks of Ti-O-Ti and Ti-O bonding at below 600 cm-1 for all TiO2 nanopowder.
228
Abstract: Using the MTS testing machine, the uniaxial compressive test of varisized da-qing limestones were undertaken, and the effect of dimensions about compressive strength, peak strain, elastic modulus and destructional forms of rock specimens were studied. It demonstrates that along with the increase of length-diameter ratio, peak strain and compressive strength turn smaller, elastic modulus gradually increases, the destruction of rock samples have a transformation from splitting failure to shear failure. Combined with the test results, Obert L model and Yang Shengqi model, the two size-effect models with extensive applications are analyzed and contrasted. And the conclusion is drawn that Obert L model has a relatively broad applicability, while Yang Shengqi model has a stronger Targeting and higher accuracy. Thus based on the Yang Shengqi model, the size-effect model of da-qing limestone is put forward, and the result indicates that this model corresponds well with the test results, having certain practical value.
233
Abstract: This paper reports a study of the effect of ZnO nanoseed structure on the growth orientation of ZnO nanorods prepared using a seed-mediated hydrothermal process. In this work, we prepared vertical align ZnO nanorods by a two-step process namely seeding and growth process. ZnO nanoseed on a silicon oxide (SiO2) coated silicon (Si) substrate was deposited by rf- sputtering under argon gas atmosphere at room temperature (ca. 25 ºC). The samples were annealed in air at 500 °C for both different annealing times namely 1 and 2 h to obtain nanoseed with varies structure and crystallinity. The ZnO nanorods were then grown from the nanoseed via a hydrothermal process in a growth solution that contained equimolar of zinc nitrate hexahydrate and hexamethylenetetramine (HMT) at 70 °C for 4 h. It was found that the durations of annealing treatment on the nanoseed indicated an effective modification on the crystal growth orientation of the nanorods, which preferred well-aligned orientation for shorter annealing time and random growth for longer annealing time. These results should find potential use for manipulating the nanostructure growth of ZnO for applied in current existing application.
239
Abstract: (Ga,Mn)As is a model diluted ferromagnet system in which the atomic spins of Mn ions are ferromagnetically arranged due to the exchange interaction with valence band holes. An important tecchnological concern regarding this system has been approaches that might result in reduction of the density of Mn interstitial and increase in the content of Mn in order to make the system practically feasible. To accomplish the objective we report the results of our recent synchrotron radiation based spectroscopic investigations concening annealing induced modification of as-grown (Ga,Mn)As layers covered with Sb capping.
243
Abstract: Carbon nanotubes were produced from the aerosol-assisted catalytic CVD method using palm oil as the precursor and ferrocene as the catalyst. The CNTs were yielded at optimized temperature of 700oC and the Field Emission Scanning Electron Microscope showed the image of CNTs produced. Raman Spectroscopy, energy dispersive X-ray and Thermogravimetric Analysis were then used to further study the Raman Spectra, purity and identification of samples.
247
Abstract: ZnO nanotips were synthesized on a sputtered ZnO buffer layer/ITO/glass by aqueous solution deposition with precursors of zinc nitrate and ammonia. The density of ZnO nanotips can be controlled by the thickness of sputtered ZnO buffer layer. The average height of 13 μm was obtained at 70°C for 24 hr and the diameter of ZnO nanotips was ranged from 60 nm to 100 nm. By thermal annealing at 300 oC in N2, the ZnO quality can be much improved and strong Micro-PL UV emission (380 nm) and lower defect emission (520 nm) of visible region are obtained. After thermal annealing at 300 °C in O2, both emissions are much improved.
252
Abstract: Chemical synthetic method in synthesizing silver nanoparticle was quite expensive, toxic and flammable. In order to enhance green technology, we develop a simple biological method for the green synthesis of silver nanoparticles using two lichens species, Parmotrema praesorediosum and Ramalina dumeticola. Silver nanoparticles were characterized using UV-Vis absorption spectroscopy and TEM. Within 72 hours reaction time, absorption spectra of silver nanoparticles formed in R. dumeticola and P. praesorediosum has absorbance peak at 407 nm and 423 nm, respectively. TEM analysis showed the average size of 20 nm of silver nanoparticles obtained in R. dumeticola and the average size of 42 nm of silver nanoparticles obtained in P. praesorediosum. These two lichens species are able to synthesize silver nanoparticles through green chemistry method, which are environmental friendly and cost effective. This is for the first time that any species of lichens was used for the synthesis of silver nanoparticles.
256
Abstract: We have successfully developed gold nanoparticle based immunostrip assay to detect protein-A (PA). Rabbit polyclonal antibody IGg (αPA) that has affinity to PA was conjugated to gold nanoparticles (GNPs) and the gold nanoconjugate (αPA-GNP) was used to detect protein-A by simple immunostrip assay method. ELISA experiments were used to confirm the retention of binding affinity of antibody towards protein-A after conjugation with gold nanoparticles.
260