Device Modeling of Ultrathin Ferroelectric Capacitors

Article Preview

Abstract:

A physically based model is developed for modeling the device behavior of ultrathin ferroelectric capacitors by considering ferroelectric/electrode interfacial capacitance and epitaxial strain arising from the lattice misfit in Landau-Ginzburg-Devonshire theory. We constructed the interfacial capacitance-mismatch strain polarization/critical thickness diagrams for the ferroelectric ultrathin capacitor. It is found that, the remanent polarization states and critical thickness for ferroelectricity of thin films is greatly influenced by the interfacial capacitances in the ultrathin capacitors involving strained epitaxial films, and the enhanced interfacial capacitances can make the ultrathin capacitor free from size effects. The results provide some new design rules for improving ferroelectric behaviors of ultrathin film ferroelectric capacitors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-8

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Yang, M.H. Tang, Z. Ye, Y.C. Zhou et al., J. Appl. Phys. Vol. 102 (2007), p.044504.

Google Scholar

[2] F. Yang, G.D. Hu, B. X. Xu, W.B. Wu et al., J. Appl. Phys. Vol. 112 (2012), p.034113.

Google Scholar

[3] F. Yang, Y.C. Zhou, M.H. Tang, F. Liu, J. Appl. Phys. Vol. 106 (2009), p.014110.

Google Scholar

[4] F. Yang, Y.C. Zhou, M.H. Tang, F. Liu, Y. Ma et al., J. Phys. D: Appl. Phys. Vol. 42 (2009), p.7.

Google Scholar

[5] V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-Vedrenne et al., Nature, Vol. 460 (2009), pp.81-84.

DOI: 10.1038/nature08128

Google Scholar

[6] V. Garcia, S. Fusil, K. Bouzehouane et al., Science Vol. 327 (2010), pp.1106-1110.

Google Scholar

[7] S.L. Miller, R.D. Nasby, J.R. Schwank et al., J. Appl. Phys. Vol. 68, pp.6463-6471 (1990).

Google Scholar

[8] F. Yang, M.H. Tang, Y.C. Zhou, X.J. Zheng et al., Appl. Phys. Lett. Vol. 91(2007), p.142902.

Google Scholar

[9] M. Stengel and N. A. Spaldin, Nature Vol. 443 (2006), pp.679-682.

Google Scholar

[10] M. Stengel, D. Vanderbilt and N.A. Spaldin, Nature Materials Vol. 8 (2009), pp.392-397.

Google Scholar

[11] L.W. Chang, M. Alexe, J.F. Scott, J.M. Gregg, Adv. Mater. Vol. 21 (2009), pp.4911-4914.

Google Scholar

[12] D.J. Kim, J.Y. Jo, Y.S. Kim, Y.J. Chang et al., Phys. Rev. Lett. Vol. 95 (2005), p.237602.

Google Scholar

[13] K.J. Choi, M. Biegalski, Y.L. Li, A. Sharan et al., Science 306 (2004), pp.1005-1009.

Google Scholar

[14] J. Junquera and P. Ghosez, Nature Vol. 422 (2003), pp.506-509.

Google Scholar

[15] N.A. Pertsev and H. Kohlstedt, Phys. Rev. Lett. Vol. 98 (2007), p.257603.

Google Scholar

[16] Y.L. Li, L.E. Cross, and L. Q. Chen, J. Appl. Phys. Vol. 98 (2005), p.064101.

Google Scholar

[17] Y.L. Li and L.Q. Chen, Appl. Phys. Lett. Vol. 88 (2006), p.072905.

Google Scholar

[18] J.X. Zhang, D.G. Schlom, L.Q. Chen and C.B. Eom, Appl. Phys. Lett. Vol. 95(2009), p.122904.

Google Scholar

[19] Values of the materials parameters (in SI units, where the temperature T in ℃) used in the simulation. α1=3. 8(T-479)×105, α11=-2. 097×108, α111=1. 294×109, α123=-2. 5×109, α1111=3. 863× 1010, Q11=0. 1, Q12=-0. 034, Q44=0. 058, c11=1. 78×1011, c12=0. 96×1011, c44=1. 22×1011, G11=2. 786 ×10-10.

Google Scholar

[20] J.Y. Jo, Y.S. Kim, T.W. Noh, J.G. Yoon et al., Appl. Phys. Lett. Vol. 89(2006), p.232909.

Google Scholar

[21] A.G. Zembilgotov, N.A. Pertsev, H. Kohlstedt et al., J. Appl. Phys. Vol. 91 (2002), p.2247.

Google Scholar