Investigation on Silicon V-Grooves Measurement with Spectral Domain Optical Coherence Tomography (SDOCT)

Article Preview

Abstract:

The objective of this research was to investigate a new detection method for testing a MEMS V-shaped groove in silicon using spectral domain optical coherence tomography (SDOCT) technique with a thermal light source where the V-groove depth, width and bottom width were measured. The SD-OCT technique with non-contact operation and acquisition rate advantage made it suitable for on-line precision measurement of V-shaped grooves in silicon.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-13

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.F. Fercher, C.K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, T. Lasser, Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique, J. Optics Communications 2004, 67-74 (2002).

DOI: 10.1016/s0030-4018(02)01137-9

Google Scholar

[2] Enock Jonathan Non-contact and non-destructive testing of silicon V-grooves: A non-medical application of optical coherence tomography (OCT), J. Optics and Lasers in Engineering 44, 1117-1131(2006).

DOI: 10.1016/j.optlaseng.2005.10.002

Google Scholar

[3] Koji Ishikawa, Jianglong Zhang, Adisorn Tuantranont, Victor M. Bright, Yung-Cheng Lee An integrated micro-optical system for VCSEL-to-fiber active alignment, , J. Sensors and Actuators A 103, 109-115(2003).

DOI: 10.1016/s0924-4247(02)00313-8

Google Scholar

[4] A. W. Zhong, S. C. Lim, A. Asundi Effects of thermally induced optical fiber shifts in V-groove arrays for optical MEMS, J. Microelectronics Journal 36, 109-113 (2005).

DOI: 10.1016/j.mejo.2004.11.004

Google Scholar

[5] M. Akiba, K. P. Chan, and N. Tanno Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD cameras, J. Optics Letters 28, 816-818 (2003).

DOI: 10.1364/ol.28.000816

Google Scholar

[6] A. V. Zvyagin, Fourier-domain optical coherence tomography: optimization of signal-to-noise ratio in full space, J. Optics Communications 242, 97-108 (2004).

DOI: 10.1016/j.optcom.2004.07.060

Google Scholar

[7] R.A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A.F. Fercher, Ultrahigh resolution Fourier domain optical coherence tomography, J. Optics Express 12, 2156-2165 (2004).

DOI: 10.1364/opex.12.002156

Google Scholar

[8] Maciej Wojtkowski, Vivek J. Srinivasan, Tony H. Ko, James G. Fujimoto, Andrzej Kowalczyk, Jay S. Duker, Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation, J. Optics Express 12, 2404-2422 (2004).

DOI: 10.1364/opex.12.002404

Google Scholar

[9] Fercher A F, Hitzenberger C K, Kamp G, et al. Measurement of intraocular distances by backscattering spectral interferometry, J. Optics Communications 117, 43~48 (1995).

DOI: 10.1016/0030-4018(95)00119-s

Google Scholar

[10] Yuping Chen, Hong Zhao and Zhao Wang. Investigation on Spectral-Domain Optical Coherence Tomography Using a Tungsten Halogen Lamp as Light Source. OPTICAL REVIEW Vol. 16, No 1 (2009) 26-29.

DOI: 10.1007/s10043-009-0006-7

Google Scholar