Determination of Electronic Conductance of 100 cm2 Single Molten Carbonate Fuel Cell

Article Preview

Abstract:

This work considers electronic conductance in a molten carbonate fuel cell and consequences of its existence. The voltage characteristics of cells show differences between a theoretical maximum circuit voltage and open circuit voltage (OCV). A relationship is assumed between the OCV value and electronic conductance. Based on experimental measurements an appropriate mathematical model was created. The model is used to calculate the temperature dependence of electronic conductance for the most popular types of electrolyte: Li2CO3/K2CO3. The results obtained point to the possible existence of a very close relationship between electronic conductance and open circuit voltage. This relationship enables OCV to be calculated when electronic conductance is known. Appropriate formulae can be determined. Temperature is one of the factors affecting electronic conductance. Other influencing factors do exist, but their impact on OCV is not well known. This article mentions some of them.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-28

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Leone, A. Lanzini, G. Ortigoza-Villalba, R. Borchiellini, Operation of a solid oxide fuel cell under direct internal reforming of liquid fuels, Chemical Engineering Journal 191 (0) (2012) 349 – 355. doi: 10. 1016/j. cej. 2012. 03. 030.

DOI: 10.1016/j.cej.2012.03.030

Google Scholar

[2] J. -H. Wee, Molten carbonate fuel cell and gas turbine hybrid systems as distributed energy resources, Applied Energy 88 (12) (2011) 4252–4263.

DOI: 10.1016/j.apenergy.2011.05.043

Google Scholar

[3] H. Zhang, G. Lin, J. Chen, Performance analysis and multi-objective optimization of a new molten carbonate fuel cell system, International Journal of Hydrogen Energy 36 (6) (2011) 4015–4021.

DOI: 10.1016/j.ijhydene.2010.12.103

Google Scholar

[4] G. De Lorenzo, P. Fragiacomo, Electrical and electrical-thermal power plants with molten carbonate fuel cell/gas turbine-integrated systems, International Journal of Energy Research 36 (2) (2012) 153–165.

DOI: 10.1002/er.1788

Google Scholar

[5] G. De Lorenzo, P. Fragiacomo, A methodology for improving the performance of molten carbonate fuel cell/gas turbine hybrid systems, International Journal of Energy Research 36 (1) (2012) 96–110.

DOI: 10.1002/er.1789

Google Scholar

[6] H. Jeong, S. Cho, D. Kim, H. Pyun, D. Ha, C. Han, M. Kang, M. Jeong, S. Lee, A heuristic method of variable selection based on principal component analysis and factor analysis for monitoring in a 300 kw mcfc power plant, International Journal of Hydrogen Energy 37 (15) (2012).

DOI: 10.1016/j.ijhydene.2012.04.135

Google Scholar

[7] D. Sanchez, R. Chacartegui, J. M. de Escalona, A. Munoz, T. Sanchez, Performance analysis of a MCFC & supercritical carbon dioxide hybrid cycle under part load operation, International Journal of Hydrogen Energy 36 (16) (2011) 10327 – 10336.

DOI: 10.1016/j.ijhydene.2010.09.072

Google Scholar

[8] D. Bakalis, A. Stamatis, Incorporating available micro gas turbines and fuel cell: Matching considerations and performance evaluation, Applied Energy 103 (2013) 607–617.

DOI: 10.1016/j.apenergy.2012.10.026

Google Scholar

[9] L. Blum, R. Deja, R. Peters, D. Stolten, Comparison of efficiencies of low, mean and high temperature fuel cell systems, International Journal of Hydrogen Energy 36 (17) (2011) 11056 – 11067.

DOI: 10.1016/j.ijhydene.2011.05.122

Google Scholar

[10] C. -G. Lee, D. -H. Kim, H. -C. Lim, Electrode reaction characteristics under pressurized conditions in a molten carbonate fuel cell, Journal of the Electrochemical Society 154 (4) (2007) B396–B404.

DOI: 10.1149/1.2434688

Google Scholar

[11] S. Campanari, Carbon dioxide separation from high temperature fuel cell power plants, Journal of Power Sources 112 (1) (2002) 273 – 289.

DOI: 10.1016/s0378-7753(02)00395-6

Google Scholar

[12] G. Discepoli, G. Cinti, U. Desideri, D. Penchini, S. Proietti, Carbon capture with molten carbonate fuel cells: Experimental tests and fuel cell performance assessment, International Journal of Greenhouse Gas Control 9 (2012) 372–384.

DOI: 10.1016/j.ijggc.2012.05.002

Google Scholar

[13] L. Bartela, J. Kotowicz, Influence of membrane CO2 separation process on the effectiveness of supercritical combined heat and power plant, Rynek Energii 97 (6) (2011) 12–19.

Google Scholar

[14] R. Nomura, N. Iki, O. Kurata, M. Kawabata, A. Tsutsumi, E. Koda, H. Furutani, System analysis of igfc with exergy recuperation utilizing low-grade coal, Vol. 4, 2011, p.243–251.

DOI: 10.1115/gt2011-46282

Google Scholar

[15] W. Budzianowski, Target for national carbon intensity of energy by 2050: A case study of poland's energy system, Energy 46 (1) (2012) 575–581.

DOI: 10.1016/j.energy.2012.07.051

Google Scholar

[16] H. Morita, M. Komoda, Y. Mugikura, Y. Izaki, T. Watanabe, Y. Masuda, T. Matsuyama, Performance analysis of molten carbonate fuel cell using a li/na electrolyte, Journal of Power Sources 112 (2) (2002) 509 – 518.

DOI: 10.1016/s0378-7753(02)00468-8

Google Scholar

[17] T. Wolf, G. Wilemski, Molten carbonate fuel cell performance model, Journal of Electrochemical Society 30 (1983) 48–55.

DOI: 10.1149/1.2119681

Google Scholar