Force Prediction Including Hysteresis Effects in a Short-Stroke Reluctance Actuator Using a3d-FEM and the Preisach Model

Article Preview

Abstract:

Magnetic hysteresis effects, present in the force of an E-core reluctance actuator, are examined by simulations and measurements. Simulations have been performed with a 3d finite element method (3d-FEM) and a Preisach model, which is extended with a dynamic magnetic equivalent circuit (MEC) model. Both simulation methods are first examined on the prediction of the magnetic flux density in a closed-and open toroid for dc-and ac excitations. Finally, both methods are used to predict the force of the E-core reluctance actuator, which is compared to ac force measurementsperformed with a piezoelectric load cell.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

187-194

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Preisach, Űber die magnetische nachwirkung, Zeitschrift fűr Physik, vol. 94, no. 5-6, p.277–302, (1935).

DOI: 10.1007/bf01349418

Google Scholar

[2] G. Bertotti and I.D. Mayergoyz, The Science of Hysteresis, vol. 1. Elsevier Academic Press, (2006).

Google Scholar

[3] I.D. Mayergoyz, Hysteresis models from the mathematical and control theory points of view, J. Appl. Phys., vol. 57, p.3803 –3805, apr (1985).

DOI: 10.1063/1.334925

Google Scholar

[4] G. Bertotti, Hysteresis in magnetism for physicist, materials scientist, and engineers, vol. 1. Academic Press, (1998).

Google Scholar

[5] D.C. Jiles, D.L. Atherton, Theory of ferromagnetic hysteresis, (invited), J. Appl. Phys., vol. 55, pp.2115-2120, (1984).

DOI: 10.1063/1.333582

Google Scholar

[6] M.L. Hodgdon, Applications of a theory of ferromagnetic hysteresis, IEEE Trans. Magn., vol. 24, pp.218-221, (1988).

DOI: 10.1109/20.43893

Google Scholar

[7] A. Katalenic, J. d. Boeij, H. Butler, and P. v. d. Bosch, Linearization of a current-driven reluctance actuator with hysteresis compensation, Mechatronics, vol. 23, pp.163-171, (2013).

DOI: 10.1016/j.mechatronics.2013.01.004

Google Scholar

[8] S. Mittal and C. -H. Menq, Hysteresis compensation in electromagnetic actuators through preisach model inversion, IEEE/ASME Trans. Mechatronics, vol. 5, p.394 –409, dec (2000).

DOI: 10.1109/3516.891051

Google Scholar

[9] L. Dupré, G. Bertotti, V. Basso, F. Fiorillo, and J. Melkebeek, Generalisation of the dynamic preisach model toward grain oriented fe-si alloys, Physica B: Condensed Matter, vol. 275, no. 1-3, p.202 – 206, (2000).

DOI: 10.1016/s0921-4526(99)00767-x

Google Scholar

[10] C.P. Steinmetz, On the law of hysteresis, Proc. of the IEEE, vol. 72, pp.197-221, (1984).

Google Scholar

[11] G. Bertotti, General properties of power losses in soft ferromagnetic materials, IEEE Trans. Magn., vol. 24, pp.621-630, (1988).

DOI: 10.1109/20.43994

Google Scholar

[12] Cobham Technical Services, Vector Fields Software, opera version 15. 0 ed., (2012).

Google Scholar

[13] N. Vrijsen, J. Jansen, and E. Lomonova, Finite element analysis and preisach hysteresis model of a toroid compared to measurements, in IEEE Proc. of ECCE 2012, Raleigh, North Carolina, 15-20 Sept. (2012).

DOI: 10.1109/ecce.2012.6342497

Google Scholar

[14] P. Hahne, R. Dietz, B. Rieth, and T. Weiland, Determination of anisotropic equivalent conductivity of laminated cores for numerical computation, IEEE Trans. Magn., vol. 32, p.1184 –1187, may (1996).

DOI: 10.1109/20.497455

Google Scholar

[15] H. Allag, A. Kedous-Lebouc, and M. Latreche, Preisach hysteresis implementation in reluctance network method, comparison with finite element method, Symposium EPNC, (2008).

Google Scholar

[16] D. Philips, L. Dupré, J. Cnops, and J. Melkebeek, The application of the preisach model in magnetodynamics: theoretical and practical aspects, J. Magn. Magn. Mater., vol. 133, p.540 – 543, (1994).

DOI: 10.1016/0304-8853(94)90616-5

Google Scholar

[17] B. Azzerboni, E. Cardelli, G. Finocchio, and F. La Foresta, Remarks about preisach function approximation using lorentzian function and its identification for nonoriented steels, IEEE Trans. Magn., vol. 39, no. 5, p.3028–3030, (2003).

DOI: 10.1109/tmag.2003.815879

Google Scholar

[18] P. Pruksanubal, A. Binner, and K. Gonschorek, Determination of distribution functions and parameters for the preisach hysteresis model, in 17th International Zurich Symposium on EMC-Zurich 2006., p.258 –261, 27 2006-march 3 (2006).

DOI: 10.1109/emczur.2006.214919

Google Scholar

[19] J. Gyselinck, L. Vandevelde, J. Melkebeek, P. Dular, F. Henrotte, and W. Legros, Calculation of eddy currents and associated losses in electrical steel laminations, IEEE Trans. Magn., vol. 35, p.1191 – 1194, may (1999).

DOI: 10.1109/20.767162

Google Scholar

[20] IEC 60404-6: Magnetic materials – Part 6: Methods of measurement of the magnetic properties of magnetically soft metallic and powder materials at frequencies in the range 20 Hz to 200 kHz by the use of ring specimens, ed. 2, (2003).

DOI: 10.3403/02899323

Google Scholar