[1]
F. Preisach, Űber die magnetische nachwirkung, Zeitschrift fűr Physik, vol. 94, no. 5-6, p.277–302, (1935).
DOI: 10.1007/bf01349418
Google Scholar
[2]
G. Bertotti and I.D. Mayergoyz, The Science of Hysteresis, vol. 1. Elsevier Academic Press, (2006).
Google Scholar
[3]
I.D. Mayergoyz, Hysteresis models from the mathematical and control theory points of view, J. Appl. Phys., vol. 57, p.3803 –3805, apr (1985).
DOI: 10.1063/1.334925
Google Scholar
[4]
G. Bertotti, Hysteresis in magnetism for physicist, materials scientist, and engineers, vol. 1. Academic Press, (1998).
Google Scholar
[5]
D.C. Jiles, D.L. Atherton, Theory of ferromagnetic hysteresis, (invited), J. Appl. Phys., vol. 55, pp.2115-2120, (1984).
DOI: 10.1063/1.333582
Google Scholar
[6]
M.L. Hodgdon, Applications of a theory of ferromagnetic hysteresis, IEEE Trans. Magn., vol. 24, pp.218-221, (1988).
DOI: 10.1109/20.43893
Google Scholar
[7]
A. Katalenic, J. d. Boeij, H. Butler, and P. v. d. Bosch, Linearization of a current-driven reluctance actuator with hysteresis compensation, Mechatronics, vol. 23, pp.163-171, (2013).
DOI: 10.1016/j.mechatronics.2013.01.004
Google Scholar
[8]
S. Mittal and C. -H. Menq, Hysteresis compensation in electromagnetic actuators through preisach model inversion, IEEE/ASME Trans. Mechatronics, vol. 5, p.394 –409, dec (2000).
DOI: 10.1109/3516.891051
Google Scholar
[9]
L. Dupré, G. Bertotti, V. Basso, F. Fiorillo, and J. Melkebeek, Generalisation of the dynamic preisach model toward grain oriented fe-si alloys, Physica B: Condensed Matter, vol. 275, no. 1-3, p.202 – 206, (2000).
DOI: 10.1016/s0921-4526(99)00767-x
Google Scholar
[10]
C.P. Steinmetz, On the law of hysteresis, Proc. of the IEEE, vol. 72, pp.197-221, (1984).
Google Scholar
[11]
G. Bertotti, General properties of power losses in soft ferromagnetic materials, IEEE Trans. Magn., vol. 24, pp.621-630, (1988).
DOI: 10.1109/20.43994
Google Scholar
[12]
Cobham Technical Services, Vector Fields Software, opera version 15. 0 ed., (2012).
Google Scholar
[13]
N. Vrijsen, J. Jansen, and E. Lomonova, Finite element analysis and preisach hysteresis model of a toroid compared to measurements, in IEEE Proc. of ECCE 2012, Raleigh, North Carolina, 15-20 Sept. (2012).
DOI: 10.1109/ecce.2012.6342497
Google Scholar
[14]
P. Hahne, R. Dietz, B. Rieth, and T. Weiland, Determination of anisotropic equivalent conductivity of laminated cores for numerical computation, IEEE Trans. Magn., vol. 32, p.1184 –1187, may (1996).
DOI: 10.1109/20.497455
Google Scholar
[15]
H. Allag, A. Kedous-Lebouc, and M. Latreche, Preisach hysteresis implementation in reluctance network method, comparison with finite element method, Symposium EPNC, (2008).
Google Scholar
[16]
D. Philips, L. Dupré, J. Cnops, and J. Melkebeek, The application of the preisach model in magnetodynamics: theoretical and practical aspects, J. Magn. Magn. Mater., vol. 133, p.540 – 543, (1994).
DOI: 10.1016/0304-8853(94)90616-5
Google Scholar
[17]
B. Azzerboni, E. Cardelli, G. Finocchio, and F. La Foresta, Remarks about preisach function approximation using lorentzian function and its identification for nonoriented steels, IEEE Trans. Magn., vol. 39, no. 5, p.3028–3030, (2003).
DOI: 10.1109/tmag.2003.815879
Google Scholar
[18]
P. Pruksanubal, A. Binner, and K. Gonschorek, Determination of distribution functions and parameters for the preisach hysteresis model, in 17th International Zurich Symposium on EMC-Zurich 2006., p.258 –261, 27 2006-march 3 (2006).
DOI: 10.1109/emczur.2006.214919
Google Scholar
[19]
J. Gyselinck, L. Vandevelde, J. Melkebeek, P. Dular, F. Henrotte, and W. Legros, Calculation of eddy currents and associated losses in electrical steel laminations, IEEE Trans. Magn., vol. 35, p.1191 – 1194, may (1999).
DOI: 10.1109/20.767162
Google Scholar
[20]
IEC 60404-6: Magnetic materials – Part 6: Methods of measurement of the magnetic properties of magnetically soft metallic and powder materials at frequencies in the range 20 Hz to 200 kHz by the use of ring specimens, ed. 2, (2003).
DOI: 10.3403/02899323
Google Scholar