Fast Optimization of a Linear Induction Motor by 3-Level Space Mapping Technique

Article Preview

Abstract:

For the design and analysis of a linear electrical motor, an analytical solution of electric and magnetic fields is barely achieved with the required accuracy, due to the end and edge effects, and the nonlinear characteristic of the materials. Optimal design with the finite element models (FEM) is often expensive, in terms of the computation time. The space-mapping techniques allow having an affordable computation cost with a minimum number of computationally expensive FEM evaluations. In this paper, based on a kriging model, a 2D FEM and a 3D FEM, a 3-level adapted output space-mapping technique is employed. The results show that the proposed algorithm allows saving a substantial amount of computation time compared to conventional 2-level output space-mapping technique.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

195-202

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.G. Lee, H. W Lee, S.H. Ham, C.S. Jin, H.J. Park and J. Lee, Influence of the Construction of Secondary Reaction Plate on the Transverse Edge Effect in Linear Induction Motor, IEEE Transactions on Magnetics, vol. 45, no. 6, pp.2815-2818, June (2009).

DOI: 10.1109/tmag.2009.2018669

Google Scholar

[2] N. Bianchi, Electrical Machine Analysis Using Finite Elements, CRC Press, Taylor & Francis Group, 2005, ISBN 0-8493-3399-7.

Google Scholar

[3] J.W. Bandler, R.M. Biernacki, S.H. Chen, P.A. Grobelny, and R.H. Hemmers, Space Mapping Technique for Electromagnetic Optimization, IEEE Transactions on Microwave Theory and Techniques, vol. 42, no. 12, pp.2536-2544, (1994).

DOI: 10.1109/22.339794

Google Scholar

[4] T. V. Tran, Problèmes Combinatoires et Modèles Multi-Niveaux pour La Conception Optimale des Machines Electriques, Ph. D thèse, Ecole Centrale de Lille, 18 Juin, 2009, Available on line: http: /tel. archives-ouvertes. fr.

Google Scholar

[5] J. Gong et al, Three-Level Adapted Output Space Mapping Technique for Bi-objective Optimization. Przegląd Elektrotechniczny, Issue 5 of Electrical Review 2012, ISSN: 0033-(2097).

Google Scholar

[6] J. F. Gieras, Linear Induction Drives, Oxford Science Publications, 1994, chapiter. 2.

Google Scholar

[7] J. Gong, Conception optimale d'un moteur linéaire à induction pour le systeme de traction ferroviaire, Ph.D. Dissertation 2011, Ecole Centrale de Lille, France (online available).

Google Scholar

[8] Vector fields software: 2D AC, 3D Electra/SS manuals.

Google Scholar

[9] W. Xu, J. Zhu, Y. Zhang, Y. Guo, G. Sun, Steady and Dynamic Performance Analyses of a Linear Induction Machine, XIX International Conference on Electrical Machines (ICEM 2010), Roma, Italia, 6-8 Sept. (2010).

DOI: 10.1109/icelmach.2010.5608158

Google Scholar

[10] J. Gong et al, Multi-objective Optimization of a Linear Induction Motor using 3D FEM. COMPEL. Vol. 31, No. 3, pages 958-971, ISBN: 0332-1649, May, (2012).

DOI: 10.1108/03321641211209834

Google Scholar

[11] Jinlin GONG et al, Optimal Design of a Double-sided Linear Induction Motor using an Efficient Global Optimization, 8th International Symposium on Linear Drives for Industrial Applications (LDIA). 7-2011, Eindhoven, Netherlands.

Google Scholar