Compact Differential Dual-Frequency Antenna Based on Metamaterial

Article Preview

Abstract:

In this paper, a compact differential dual-frequency antenna based on metamaterial is presented. To realize the dual-frequency operation of the left-handed and zeroth-order resonant modes, a ring slot and two diagonal slots are embedded in the radiating patch, and via holes are employed to connect the patch and the ground plane. In order to improve the impedance matching of the antenna, four corners are truncated in the ground plane. The proposed antenna has a compact size of 40 mm × 40 mm, which equals to 0.25 λ1 × 0.25 λ1 (λ1, the guided wavelength at f1). The simulated results show that the proposed antenna can operate at 0.89 and 1.79 GHz bands. Meanwhile, good radiation performances are achieved.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

254-257

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. K. Yoon and M. Ismail: A fully-integrated CMOS RF front-end for Wi-Fi and Bluetooth. Proc. IEEE Circuits and Systems (2004), p.357.

DOI: 10.1109/newcas.2004.1359106

Google Scholar

[2] F. Bilotti, A. Alu, and L. Vegni: Design of Miniaturized Metamaterials Patch Antennas with m-negative Loading. IEEE Trans. Antennas Propag., Vol. 56, no. 6 (2008), p.1640.

DOI: 10.1109/tap.2008.923307

Google Scholar

[3] S. Pyo, J. W. Baik, S. H. Cho, and Y. S. Kim: Metamaterial-based Antenna with Triangular Slotted Ground for Efficiency Improvement. Electron. Lett., Vol. 45, no. 3 (2009), p.144.

DOI: 10.1049/el:20092424

Google Scholar

[4] M. A. Antoniades and G. V. Eleftheriades: Multiband Compact Printed Dipole Antennas Using NRI-TL Metamaterial Loading. IEEE Trans. Antennas Propag., Vol. 60, no. 12 (2012), p.5613.

DOI: 10.1109/tap.2012.2211324

Google Scholar

[5] J. Ha, K. Kwon, Y. Lee, and J. Choi: Hybrid Mode Wideband Patch Antenna Loaded With a Planar Metamaterial Unit Cell. IEEE Trans. Antennas Propag., Vol. 60, no. 2 (2012), p.1143.

DOI: 10.1109/tap.2011.2173114

Google Scholar

[6] H. Zhou, Z.B. Pei, S. B. Qu, S. Zhang, J. F. Wang, and Z. S. Duan et al.: A Novel High-Directivity Microstrip Patch Antenna Based on Zero-Index Metamaterial. IEEE Antennas Wireless Propagat. Lett., Vol. 8 (2009), p.538.

DOI: 10.1109/lawp.2009.2018710

Google Scholar

[7] D. Y. Li, Z. Szabó, X. M. Qing, E. P. Li, and Z. N. Chen: A High Gain Antenna With an Optimized Metamaterial Inspired Superstrate. IEEE Trans. Antennas Propag., Vol. 60, no. 12 (2012), p.6018.

DOI: 10.1109/tap.2012.2213231

Google Scholar