Solution of Generalized Jaynes-Cummings Model for many Particle Systems

Article Preview

Abstract:

We consider the dynamics of a system consisting of N two-level atoms interacting with a multi-mode cavity field. For the given system, the generalized kinetic equation is obtained and conditions are given under which its solution is reduced to solution of a linear equation, and of the one-dimensional nonlinear Schrodinger equation, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

272-277

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.T. Jaynes and F.W. Cummings: Proc. IEEE 51 (1963), p.89–109.

Google Scholar

[2] Q.A. Turchette et al. Phys. Rev. Lett. 75 (1995), p.4710.

Google Scholar

[3] M. Nielsen and I. Chuang: Quantum Computation and Quantum Information (Cambridge University Press 2000).

Google Scholar

[4] V.M. Bastidas et al.: Phys. Rev. Lett. 108 (2012), p.043003.

Google Scholar

[5] H.I. Yoo and J.H. Eberly: Phys. Rep. 118 (1985), p.239.

Google Scholar

[6] B.W. Shore and P.L. Knight: J. Mod. Opt. 40 (1993), p.1195–1238.

Google Scholar

[7] H. Weimer and G. Mahler: Phys. Rev. A. 76 (2007), p.053819.

Google Scholar

[8] S. De Liberato, D. Gerace, I. Carusotto, and C. Ciuti: Phys. Rev. A. 80 (2009), p.053810.

Google Scholar

[9] M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J.M. Raimond, and S. Haroche: Phys. Rev. Lett. 76 (1996), p.1800.

DOI: 10.1103/physrevlett.76.1800

Google Scholar

[10] S. Bose et al.: Phys. Rev. Lett. 87 (2001), p.050401.

Google Scholar

[11] S. Scheel et al.: J. Mod. Opt. 50 (2003), p.881–889.

Google Scholar

[12] H. Azuma: J. Phys. D: Appl. Phys. 41 (2008), p.025102.

Google Scholar

[13] M. Tavis and F.W. Cummings: Phys. Rev. 170 (1968), p.379.

Google Scholar

[14] N.N. (Jr) Bogoliubov, Fam Le Kien, A.S. Shumovsky: Mathematical Method in the Statistical Mechanics of Model Systems (Nauka, Moscow 1989).

Google Scholar

[15] N.N. Bogoliubov, N.N. (Jr) Bogoliubov: Physics of Elementary Particles and Atomic Nuclei v. 11, (1980), p.245; Aspects of Polaron Theory (Fizmatlit, Moscow 2004).

Google Scholar

[16] N.N. (Jr) Bogoliubov, M. Yu. Rasulova, I.A. Tishabaev: Theor. Math. Phys. 171 (2012), p.523.

Google Scholar

[17] N.N. (Jr) Bogoliubov, M. Yu. Rasulova, I.A. Tishabaev: Mod. Phys. Lett. B. 25 (2011), p.1417.

Google Scholar

[18] D. Ya. Petrina, V.Z. Enolskiy: Preprint ITP-76-17R (1976).

Google Scholar

[19] V.E. Zakharov, A.B. Shabat: JETP 64 (1973), p.1627.

Google Scholar

[20] L. Allen, J.H. Eberly: Optical Resonance and Two-Level Atoms, (Mir, Moscow 1978).

Google Scholar