The Facet Passivation Characteristic of 940nm Semiconductor Laser

Article Preview

Abstract:

A novel facet coating technology is presented by studying catastrophic optical mirror damage mechanism of semiconductor laser. In this technology, semiconductor laser are cleaved in the air, and the surface oxide layer is removed with a low energy ion source, immediately flowed by coating the facet with 20nm of thin ZnSe passivation layer. The function of the passivation layer is to protect semiconductor laser facet, and prevent impurity particles diffusing to the facet. Finally the facet is coated with oxidative optical film. The test results of semiconductor laser output power show that output power with the coated ZnSe passivation layer method is 12% higher than coated Si passivation layer, and 36% higher than that coated oxidative optical film. The device coated oxidative optical film is failed when current is 4.1A, and the device coated with Si passivation layer is failed when current is 4.8A, the final failed of the device is coated ZnSe passivation layer. In conclusion, the method of coated ZnSe passivation layer on the semiconductor laser facet can effectively prevent the catastrophic optical mirror damage, and increase the output power of semiconductor lasers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

278-282

Citation:

Online since:

December 2013

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Uwe Brauch, Peter Loosen, and Hans Opower: Springer-Series, Topics in Applied Physics, vol. 78(2000), p.303.

Google Scholar

[2] R. Hülsewede, H. Schulze, J. Sebastian, D. Schröder, J. Meusel: SPIE, vol. 6456(2007), pp.645607-1.

Google Scholar

[3] Wei Gao, Zuntu Xu, Lisen Cheng, Kejian Luo, Andre Mastrovito: Proc. of SPIE, vol. 6456(2007), p. 64560B-1.

DOI: 10.1109/qels.2007.4431505

Google Scholar

[4] S. L. Yellen, A. H. Shepard, R. J. Dalby, J. A. Baumann, H. B. Serreze: IEEE Quantum Electron, vol. 29(6) (1993), p. (2058).

Google Scholar

[5] A. M. Fukuda, in: Reliability and Degradation of Semiconductor Lasers and LEDs. Norwood, MA, Artech House(1991).

Google Scholar

[6] T. Yuasa, M. Ogawa, K. Endo and H. Yonezu: Applied Physics Letters, vol. 32(2)(1978), p.119.

Google Scholar

[7] R. V. Ghita, M. F. Lazarescu, A. S. Manea, C. Logofatu, E. Vasile: SPIE, vol. 5581(2004), p.268.

Google Scholar

[8] C. J. Sandroff, R. N. Nottenburg, J. C. Bischoff, and R. Bhat: Applied Physics Letters, vol. 51(1) (1987), p.33.

Google Scholar

[9] H. Kawanishi, H. Ohno, T. Morimoto, S. Kaneiwa, N. Miyauchi: SPIE, vol. 1219(1990), pp.309-316.

Google Scholar

[10] Satoshi Kamiyama, Yoshihiro Mori, Yasuhito Takahashi, and Kiyoshi Ohnaka: Applied Physics Letters, vol. 58(23) (1991), p.2595.

Google Scholar

[11] Gasser, Marcel, European patent, NO. 0416190B1, July, (1989).

Google Scholar

[12] M. GASSER, E. E. LATTA, U.S. Patent, NO. 5063173, November, (1991).

Google Scholar

[13] H. Horie, Y. Yamamoto, N. Arai, H. Ohta: IEEE photonics technology letters, vol. 12(1)( 2000), p.13.

Google Scholar

[14] F. Rinner, J. Rogg, M. T. Kelemen, M. Mikulla, G. Weimann:J. Appl. Phys., vol. 93(3)( 2003), p.1848.

Google Scholar

[15] M. L. Osowski, W. Hu, R. M. Lammert, S. W. Oh, P. T. Rudy: SPIE, vol. 6952(2008), pp.695208-1.

Google Scholar

[16] E. F. Schubert, M. Passlack, M. Hong, J. Mannerts, R. L. Opila: Appl. Phys. Lett., vol. 64(22)(1994), p.2976.

Google Scholar

[17] M. Passlack, M. Hong, E. F. Schubert, J. R. Kwo, J. P. Mannaerts: Appl. Phys. Lett., vol. 66(5) (1995), p.625.

Google Scholar

[18] Charache Greg, Hostetler John, Jiang Chinglong, J. Menna, Raymond, Radionova, Radosvetain: NO. WO2006/104980A2, May(2006).

Google Scholar