Synthesis of CuIn0.7Ga0.3Se2 Nanoparticles and its Quarternary Sputtering Target

Article Preview

Abstract:

The chalcopyrite-type of CuIn0.7Ga0.3Se2 nanoparticle was successfully prepared by mechanical alloying method (MA). The phase of the obtained powder was analyzed by x-ray diffraction (XRD), and its microstructure was analyzed by scanning electron microscope (SEM) and transmission election microscope (TEM). Subsequently, the sintering process of CIGS quarternary target was investigated. The result suggests that only CuIn0.7Ga0.3Se2 phase exist in the powder with the rotation speed of 350 r/min and 2 hours mixing time by planetary ball milling. The particles were seriously agglomerated and the size of agglomerates was about 100 nm. Finally the as-made CIGS nanoparticles were used to fabricate CIGS target through both pressureless sintering and hot pressing methods. The hot pressing was fairly effective to increase the density of CIGS target. This fabricated target can be used for magnetron-sputtering deposition of CIGS absorbers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-70

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Chiril˘a A et al. Nature Materials . 10(2011) 857–861.

Google Scholar

[2] Dhere NG, Lynn KW. Solar Energy Materials and Solar Cells . 41-42(1996) 271–279.

DOI: 10.1016/0927-0248(95)00146-8

Google Scholar

[3] Kim SD, Kim HJ, Yoon KH, Song JS. Solar Energy Materials and Solar Cells. 62(2000) 357–358.

Google Scholar

[4] Li W, Sun Y, Liu W, Zhou L. Solar Energy . 80(2006) 191–195.

Google Scholar

[5] Volobujeva O, Altosaar M, Raudoja J, Mellikov E, Grossberg M, Kaupmees L, Barvinschi P. Solar Energy Materials & Solar Cells . 93(2009) 11–14.

DOI: 10.1016/j.solmat.2008.01.007

Google Scholar

[6] J. A Frantz, R.Y. Bekele, V.Q. Nguyen, J.S. Sanghera, A. Bruce, S.V. Frolov, M. Cyrus, I.D. Aggarwal, Thin Solid Films . 519(2011) 7763-7765.

DOI: 10.1016/j.tsf.2011.06.014

Google Scholar

[7] J.H. Shi , Z.Q. Li, D.W. Zhang, Q.Q. Liu, Z Sun, S.M. Huang, Prog. Photovolt: Res. Appl. 19(2011) 160-164.

Google Scholar

[8] C. Eberspacher, C. Fredric, K. Pauls, J. Serra, Thin Solid Films . 387(2011) 18–22.

DOI: 10.1016/s0040-6090(00)01729-6

Google Scholar

[9] S.J. Ahn, C.W. Kim, J.H. Yun, J.C. Lee, K.H. Yoon, Sol. Energy Mater. Sol. Cells . 91(2007) 1836–1841.

Google Scholar

[10] S.J. Ahn, K.H. Kim, Y.G. Chun, K.H. Yoon, Thin Solid Films . 515(2007) 4036–4040.

Google Scholar

[11] M. Ganchev, J. Kois, M. Kaelin, S. Bereznev, E. Tzvetkova, O. Volobujeva, N. Stratieva, A. Tiwari, Thin Solid Films . 511-512(2006) 325–327.

DOI: 10.1016/j.tsf.2005.11.076

Google Scholar

[12] C. Suryanarayana, M.G. Norton, X-Ray Diffraction: A Practical Approach, Plenum, New York, (1998).

Google Scholar

[13] K. Sakurai, R. Hunger, N. Tsuchimochi, T. Baba, K. Matsubara, P. Fons, A. Yamada, T. Kojima, T. Deguchi, H. Nakanishi, S. Niki, Thin Solid Films . 431-432(2003) 6–10.

DOI: 10.1016/s0040-6090(03)00226-8

Google Scholar

[14] C.A. Kaufamn, A. Neisser, R. Klenk, R. Scheer, Thin Solid Films . 480-481(2005) 515–519.

DOI: 10.1016/j.tsf.2004.11.067

Google Scholar

[15] B. Vidhya, S. Velumani, R. Asomoza, J Nanopart Res . 13(2011) 3033-3042.

Google Scholar

[16] F.B. Dejene, V. Alberts, J. Phys. D: Appl. Phys. 38(2005) 22–25.

Google Scholar