DWT-SVM on Near-Infrared Spectra for Moisture and Volatile Determination of Coal

Article Preview

Abstract:

We studied moisture and volatile determination in bituminous coal samples using near-infrared (NIR) spectra. This research applied support vector machine (SVM) and discrete wavelet transform (DWT). Firstly, NIR spectra were pre-processed by DWT for fitting and compression. Then, DWT coefficients were used to build regression model with SVM. We used NIR spectra to determination moisture and volatile determination in coal samples separately. Through parameters optimization, the results show that DWT-SVM can obtain satisfactory performance for moisture and volatile determination in coal samples.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

71-74

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Ferrari, L. Mottola, V Quaresima: Canadian J. Applied Physiology Vol. 29 (2004), p.463.

Google Scholar

[2] J. Trygg and S. Wold: J. Chemom. Vol. 16 (2002), p.119.

Google Scholar

[3] M.T. Bona and J.M. Andrés: Talanta Vol. 72 (2007), p.1423.

Google Scholar

[4] S. Wang, X. Feng, J. Zhou and X. Wang: Advanced Materials Research Vol. 236-238 (2011), p.799.

Google Scholar

[5] Y. Wang, G. Shi, X. Zhong and D. Wang: Applied Mechanics and Materials Vol. 80-81 (2011), pp.279-283.

Google Scholar

[6] D.W. Kim, J.M. Lee and J.S. Kim: Korean J. Chem. Eng. Vol. 26 (2009), p.489.

Google Scholar

[7] Y. Wang, D. Wang, H. Xin, X. Zhong and G. Shi: R. Chen (Ed. ) ICICIS 2011, Part Ⅰ CCIS Vol. 134 (2011), p.348.

Google Scholar

[8] X.S. Liu, H.B. Qu and Y.Y. Cheng: Chem. Res. Chinese U. Vol. 21 (2005), p.36.

Google Scholar

[9] K.W. Mok Daniel and F.T. Chau: Chemom. Intel. Lab Systems. Vol. 82 (2006), p.210.

Google Scholar

[10] I. Ben-Gera and K.H. Norris: J. Food Sci. Vol. 33 (1968), p.64.

Google Scholar

[11] X. Shao and W. Cai: Rev. Anal. Chem. Vol. 17 (1998), p.235.

Google Scholar

[12] X. Shao, A.K.M. Leung and F.T. Chau: Acc. Chem. Res. Vol. 36 (2003), p.276.

Google Scholar

[13] V. Vapnik: The Natures of Statistical Learning Theory (Springer-Verlag, USA 1995).

Google Scholar

[14] T. van Gestel, J. Suykens, B. Baesens, S. Viaene, J. Vanthienen, G. Dedene, B. de Moor and J. Vandewalle: Machine Learn Vol. 54(2004), p.5.

DOI: 10.1023/b:mach.0000008082.80494.e0

Google Scholar

[15] N. Pochet, F. De Smet, J. Suykens and B. De Moor: Bioinformatics Vol. 20(2004), p.3185.

Google Scholar

[16] B. Schölkopf, C. Burges and A. Smola: Support Vector Learning 1999, p.25.

Google Scholar

[17] J. A. K. Suykens and J. Vandewalle: Neur. Proc. Let. Vol. 9 (1999), p.293.

Google Scholar

[18] H. Chang, A. Li, H. Wang and H. Tan: Coal Quality Techno. 2004, p.50.

Google Scholar

[19] Chinese National Standards: GB212-(2008).

Google Scholar

[20] R.W. Kennard and L.A. Stone: Technometrics Vol. 11 (1969), p.137.

Google Scholar

[21] O.Y. Rodionova and A.L. Pomerantsev: J. Chemom. Vol. 22 (2008), p.674.

Google Scholar