[1]
N.P. Padture, M. Gell, E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science 296 (2002) 280-284.
DOI: 10.1126/science.1068609
Google Scholar
[2]
R. Anandkumar, A. Almeida, R. Vilar, Microstructure and sliding wear resistance of an Al-12 wt. % Si/TiC laser clad coating, Wear 282 (2012) 31-39.
DOI: 10.1016/j.wear.2012.01.022
Google Scholar
[3]
B. Szczygiel, M. Kolodziej, Composite Ni/Al2O3 coatings and their corrosion resistance, Electrochim. Acta 50 (2005) 4188-4195.
DOI: 10.1016/j.electacta.2005.01.040
Google Scholar
[4]
M. Masanta, P. Ganesh, R. Kaul, Development of a hard nano-structured multi-component ceramic coating by laser cladding, Mater. Sci. Eng. A 508 (2009) 134-140.
DOI: 10.1016/j.msea.2008.12.031
Google Scholar
[5]
H.B. Liu, J. Tao, J. Xu, et al., Microstructure characterization of oxidation of aluminized coating prepared by a combined process, J. Nucl. Mater. 378 (2008) 134-138.
DOI: 10.1016/j.jnucmat.2008.05.012
Google Scholar
[6]
E. Serra, P.J. Kelly, D.K. Ross, R.D. Arnell, Alumina sputtered on MANET as an effective deuterium permeation barrier, J. Nucl. Mater. 257 (1998) 194-198.
DOI: 10.1016/s0022-3115(98)00473-5
Google Scholar
[7]
G. Sivakumar, R.O. Dusane, S.V. Joshi, A novel approach to process phase pure alpha-Al2O3 coatings by solution precursor plasma spraying, J. Euro. Ceram. Soc. 33 (2013) 2823-2829.
DOI: 10.1016/j.jeurceramsoc.2013.05.005
Google Scholar
[8]
T. Kohara, H. Tamagaki, Y. Ikari, Deposition of alpha-Al2O3 hard coatings by reactive magnetron sputtering, Sur. Coat. Tech. 185 (2004) 166-171.
DOI: 10.1016/j.surfcoat.2003.11.017
Google Scholar
[9]
J. Masalski, J. Gluszek, J. Zabrzeski, Improvement in corrosion resistance of the 3161 stainless steel by means of Al2O3 coatings deposited by the sol-gel method, Thin Solid Films 349 (1999) 186-190.
DOI: 10.1016/s0040-6090(99)00230-8
Google Scholar
[10]
Y.X. Li, J.K. Yao and Y. Liu, Synthesis and cladding of Al2O3 ceramic coatings on steel substrates by a laser controlled thermite reaction, Surf. Coat. Technol. 172 (2003) 57-64.
DOI: 10.1016/s0257-8972(03)00255-x
Google Scholar
[11]
S. Chatterjee, P. Ganesh, R. Palai, Effect of h-BN addition on the properties of nanostructured Al2O3-TiB2-TiN based coatings developed by combined SHS and laser surface alloying, Surf. Coat. Technol. 204 (2010) 1702-1709.
DOI: 10.1016/j.surfcoat.2009.10.047
Google Scholar
[12]
S.T. Li, Basis of Crystalline X-ray Diffraction, Metallurgical Industry Press, Bejing, P. R. China, (1990).
Google Scholar
[13]
M. Masanta, S.M. Shariff, A.R. Choudhury, Evaluation of modulus of elasticity, nano-hardness and fracture toughness of TiB2-TiC-Al2O3 composite coating developed by SHS and laser cladding, Mater. Sci. Eng. A 528 (2011) 5327-5335.
DOI: 10.1016/j.msea.2011.03.057
Google Scholar
[14]
E.M. Sharifi, F. Karimzadeh, M.H. Enayati, Mechanochemically synthesized Al2O3-TiC nanocomposite, J. Alloys Compd. 491 (2010) 411-415.
DOI: 10.1016/j.jallcom.2009.10.206
Google Scholar
[15]
H.G. Zhu, Y.L. Jiang, Y.Q. Yao, Reaction pathways, activation energies and mechanical properties of hybrid composites synthesized in-situ from Al-TiO2-C powder mixtures, Mater. Chem. Phys. 137 (2012) 532-542.
DOI: 10.1016/j.matchemphys.2012.09.052
Google Scholar
[16]
H.Q. Hu, Metal solidification principle, second ed., China Machine Press, Bejing, P. R. China, (2000).
Google Scholar
[17]
D.S. Wang, Z.J. Tian, L.D. Shen, Influences of laser remelting on microstructure of nanostructured Al2O3-13wt. % TiO2 coatings fabricated by plasma spraying, Appl. Surf. Sci. 255 (2009) 4606-4610.
DOI: 10.1016/j.apsusc.2008.11.082
Google Scholar