Robust Rubik’s Cube Detection Using Hough Transform and Advanced Clustering Functions

Article Preview

Abstract:

Presented paper describes vision-based algorithm for 2D Rubik’s cube state detection suitable for cases in which long-term fixed camera-cube position is not possible. The main focus was to provide a robust algorithm for position and color detection in order to overcome problems observed in previous version. First part of paper describes Hough transform and advanced clustering functions that were used for cube position detection. Described algorithm provides robustness to strong occlusions and various lighting conditions. Second part of paper describes color detection algorithm and problems of prior classification in various color spaces.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

253-264

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Cube solving robots http: /www. speedsolving. com/wiki/index. php/List_of_cube_solving_robots.

Google Scholar

[2] Lu, S. L., Huang, M., & Kong, F. R. (2013). The Design of a Rubik's Cube Robot. Advanced Materials Research, 709, 432-435.

DOI: 10.4028/www.scientific.net/amr.709.432

Google Scholar

[3] CubeStormer III http: /gizmodo. com/lego-robot-with-a-smartphone-brain-shatters-rubiks-cub-1544556295.

Google Scholar

[4] Kasprzak, W., Szynkiewicz, W., & Czajka, Ł. (2006). Rubik's cube reconstruction from single view for Service robots. Machine Graphics & Vision International Journal, 15(3), 451-459.

Google Scholar

[5] Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. ACM computing surveys (CSUR), 31(3), 264-323.

DOI: 10.1145/331499.331504

Google Scholar

[6] http: /www. mathworks. com/matlabcentral/fileexchange/35014-clusterdata/content/clusterData.

Google Scholar

[7] Kadir, T., Zisserman, A., & Brady, M. (2004). An affine invariant salient region detector. In Computer Vision-ECCV 2004 (pp.228-241). Springer Berlin Heidelberg.

DOI: 10.1007/978-3-540-24670-1_18

Google Scholar

[8] Park, S. H., Yun, I. D., & Lee, S. U. (1998).

Google Scholar

[9] Duda, R. O., & Hart, P. E. (1972). Use of the Hough transformation to detect lines and curves in pictures. Communications of the ACM, 15(1), 11-15.

DOI: 10.1145/361237.361242

Google Scholar