Sintering of Fine Grained Polycrystalline Cubic Boron Nitride Compacts without Binder

Article Preview

Abstract:

Cubic boron nitride (cBN) is a excellent super hard materials with superior mechanical properties that has been widely used in different industrial applications. Conventional cBN was sintered with binder in the cBN powder, and the binder affect the mechanical properties of cBN. Here we report that we sinter the polycrystalline cBN on WC-16wt%Co substrates without any sintering agent at the pressure 5.5 GPa and temperatures of 1300-1600°C for 10 min. In the sintering, we used 1-2μm fine grained cBN powder as the starting materials, also, liquid substance infiltrated from the substrates and occurred chemical reactions with cBN powder. Reaction contents were investigated at different temperatures according to X-ray diffraction (XRD). Plenty of direct BN-BN bonding was formed in the scanning electron microscopy ( SEM) observation.The hardness of best samples reach 38.5 GPa under the loading force of 5 kg, which have high hardness for the formation of direct BN-BN fine grains in the sample. .

You might also be interested in these eBooks

Info:

Periodical:

Pages:

79-84

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. N. Jayawardane, Chris J. Pickard, L. M. Brown, and M. C. Payne. PhysRevB. 64. 115107 (2001).

Google Scholar

[2] Daniel J. Kester and Russell Messier. J. Appl. Phys. 72, 504 (1992).

Google Scholar

[3] Laurence Vel, Gérard Demazeau, Jean Etourneau. Materials Science and Engineering: B, 149-164 (1991).

Google Scholar

[4] Takashi Taniguchi, Shinobu Yamaoka. Journal of Crystal Growth, 549–557, (2001).

Google Scholar

[5] M. W Cook, P. K Bossom. International Journal of Refractory Metals and Hard Materials, 147–152, (2000).

Google Scholar

[6] A. Braghini Jr., R.T. Coelho, Int. J. Adv. Manuf. Technol., 244 (2001).

Google Scholar

[7] E.O. Ezugwu, R.B. Da Silva, J. Bonney, ` A.R. Machado, Int. J. Mach. Tool. Manuf. , 1009 (2005).

Google Scholar

[8] A.S. More, W. Jiang, W.D. Brown, A.P. Malshe, J. Mater. Process. Technol., 253 (2006).

Google Scholar

[9] K.S. Neo, M. Rahman, X.P. Li, H.H. Khoo, M. Sawa, Y. Maed,J. Mater. Process. Technol. , 326 (2003).

Google Scholar

[10] Dubrovinskaia, N. et al. Appl. Phys. Lett. 90, 101912 (2007).

Google Scholar

[11] Solozhenko, V. L., Kurakevych, O. O. & Le Godec, Y. Adv. Mater. 24, 1540–1544 (2012).

Google Scholar

[12] Y. J. Tian, B. Xu, D. L. Yu, Y. M. Ma, Y. B. Wang, Y. B. Jiang,W. T. Hu, C. C. Tang, Y. F. Gao, K. Luo, Z. S. Zhao, L. M. Wang, B. Wen, J. L. He and Z. Y. Liu. Nature 493, 385–388 (2013).

DOI: 10.1038/nature11728

Google Scholar

[13] E. O. Hall, Proc. Phys. Soc. B, 64, 747, (1951).

Google Scholar

[14] N. J. Petch, J. Iron Steel Inst. 1953, 174, 25. 15. O. Fukunaga, J. Phys.: Condens. Matter , 10979 (2002).

Google Scholar

[15] ADA L. RYLAND, Journal Of Chemical Education, 80-83, (1958).

Google Scholar

[16] C. Suryanarayana and M. Grant Norton, Microsc. Microanal. 4, 513-515(1999).

Google Scholar

[17] X. Zhu, R. Birringer, U. Herr, and H. Gleiter, Phys. Rev. B, 9085-9090 (1987).

Google Scholar

[18] David C. Joy, Dale E. Newbury and David L. Davidson, J. Appl. Phys. 53, R81 (1982).

Google Scholar

[19] Angus J. Wilkinson,  Peter B. Hirsch, Micron, 279–308(1997).

Google Scholar

[20] H.J. Leamy, J. Appl. Phys. 53, R51 (1982).

Google Scholar

[21] V. Brazhkin, N. Dubrovinskaia, M. Nicol, N. Novikov, R. Riedel, V. Solozhenko & Y. Zhao, What does harder than diamond' mean, Nature Mater. 3, Nature Mater. 576–577 (2004).

DOI: 10.1038/nmat1196

Google Scholar

[22] Mikhail I. Eremets, Ivan A. Trojan, Patience Gwaze, Joachim Huth, Reinhard Boehler, Vladimir D. Blank. Appl. Phys. Lett. 87, 141902 (2005).

DOI: 10.1063/1.2061853

Google Scholar

[23] Dubrovinsky, L., Dubrovinskaia, N., Prakapenka, V. B. & Abakumov, A. M. Nature Commun, 3, 1163 (2012).

Google Scholar

[24] Yusheng Zhao, Jiang Qian, Luke L. Daemen, Cristian Pantea, Jianzhong Zhang, Georgiy A. Voronin and T. Waldek Zerda. Appl. Phys. Lett. 84, 1356, (2004).

DOI: 10.1063/1.1650556

Google Scholar

[25] G. Poulachona, A. Moisanb, I.S. Jawahirc. Wear. 250, 576–586, (2001).

Google Scholar