Redesign of a Reverse Shoulder Prosthesis: Kinematic and Mechanical Study

Article Preview

Abstract:

In this work a commercial reverse shoulder prosthesis has been redesigned to improve performances in terms of range of movements of the implant and stability to dislocation. A kinematic and mechanic study has been performed using a realistic solid model of the prothesised shoulder: in particular, all the components of the prosthesis have been acquired via a 3D laser scanner and inserted in a virtual humerus-glenoid system by reproducing the common surgical procedure. The final model has been used to measure the maximum angles of abduction and rotation of the arm and the shear forces that cause dislocation. Modifications proposed to the commercial prosthesis are: a different orientation of the cutting plane of the glenoid component and the interposition of a spacer to move the center of rotation of the arm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

847-851

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Buck, F.M., Jost, B., Hodler, J. Shoulder arthroplasty (2008) European Radiology, 18 (12), pp.2937-2948.

DOI: 10.1007/s00330-008-1093-8

Google Scholar

[2] McClure, P.W., Michener, L.A., Sennett, B.J., Karduna, A.R. Direct 3-dimensional measurement of scapular kinematics during dynamic movements in vivo (2001) Journal of Shoulder and Elbow Surgery, 10 (3), pp.269-277.

DOI: 10.1067/mse.2001.112954

Google Scholar

[3] Masjedi, M., Johnson, G.R. Glenohumeral contact forces in reversed anatomy shoulder replacement (2010) Journal of Biomechanics, 43 (13), pp.2493-2500.

DOI: 10.1016/j.jbiomech.2010.05.024

Google Scholar

[4] Ingrassia, T., Nalbone, L., Nigrelli, V., Tumino, D., Ricotta, V. Finite element analysis of two total knee joint prostheses (2013) International Journal on Interactive Design and Manufacturing, 7 (2), pp.91-101. DOI: 10. 1007/s12008-012-0167-7.

DOI: 10.1007/s12008-012-0167-7

Google Scholar

[5] Cerniglia, D., Ingrassia, T., D'Acquisto, L., Saporito, M., Tumino, D. Contact between the components of a knee prosthesis: Numerical and experimental study (2012) Frattura ed Integrita Strutturale, 22, pp.56-68. DOI: 10. 3221/IGF-ESIS. 22. 07.

DOI: 10.3221/igf-esis.22.07

Google Scholar

[6] Tumino, D., Zuccarello, B. Fatigue delamination experiments on GFRP and CFRP specimens under single and mixed fracture modes (2011) Procedia Engineering, 10, pp.1791-1796.

DOI: 10.1016/j.proeng.2011.04.298

Google Scholar

[7] Pitarresi, G., Alessi, S., Tumino, D., Nowicki, A., Spadaro, G. Interlaminar fracture toughness behavior of electron-beam cured carbon-fiber reinforced epoxy-resin composites (2013) Polymer Composites. Article in Press. DOI: 10. 1002/pc. 22806.

DOI: 10.1002/pc.22806

Google Scholar

[8] Spadaro, G., Alessi, S., Dispenza, C., Sabatino, M.A., Pitarresi, G., Tumino, D., Przbytniak, G. Radiation curing of carbon fibre composites (2014) Radiation Physics and Chemistry, 94 (1), pp.14-17. DOI: 10. 1016/j. radphyschem. 2013. 05. 052.

DOI: 10.1016/j.radphyschem.2013.05.052

Google Scholar

[9] Nalbone, L., Adelfio, R., D'arienzo, M., Ingrassia, T., Nigrelli, V., Zabbara, F., Paladini, P., Campi, F., Pellegrini, A., Porcellini, G. Optimal positioning of the humeral component in the reverse shoulder prosthesis (2013).

DOI: 10.1007/s12306-013-0274-z

Google Scholar

[10] Ingrassia, T., Mancuso, A. Virtual prototyping of a new intramedullary nail for tibial fractures, (2013) International Journal on Interactive Design and Manufacturing, 7 (3) pp.159-169.

DOI: 10.1007/s12008-012-0175-7

Google Scholar

[11] Ingrassia, T., Mancuso, A., Nigrelli, V., Tumino, D. Numerical study of the components positioning influence on the stability of a reverse shoulder prosthesis (2014).

DOI: 10.1007/s12008-014-0215-6

Google Scholar

[12] Ingrassia, T., Nigrelli, V., Buttitta, R. A comparison of simplex and simulated annealing for optimization of a new rear underrun protective device. (2013) Engineering with Computers, Vol 29 (3), pp.345-358.

DOI: 10.1007/s00366-012-0270-1

Google Scholar

[13] Pennestrì, E., Stefanelli, R., Valentini, P.P., Vita, L. Virtual musculo-skeletal model for the biomechanical analysis of the upper limb (2007) Journal of Biomechanics, 40 (6), pp.1350-1361.

DOI: 10.1016/j.jbiomech.2006.05.013

Google Scholar