[1]
H.Q. Gu, J.M. Zhao and X.H. Zhang: Hybrid methodology of degradation feature extraction for bearing prognostics. Eksplotacja I Niezawodnosc-Maintenance and Reliability, Vol. 15, Issue. 2, (2013), pp.195-201.
Google Scholar
[2]
H. Qiu, L. Jay, J. Lin and G. Yu: Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics. Journal of Sound and Vibration, Vol. 289, (2006), pp.1066-1090.
DOI: 10.1016/j.jsv.2005.03.007
Google Scholar
[3]
K.S. Jiang, G.H. Xu, L. Liang, G.Q. Zhao and T.F. Tao: A quantitative diagnosis method for rolling element bearing using signal complexity and morphology filtering. Journal of Vibroengineering, Vol. 14, Issue. 4, (2012), pp.1862-1875.
Google Scholar
[4]
X.H. Zhang, J.S. Kang and T. Jin: Degradation modeling and maintenance decision using Bayesian belief networks. IEEE Transactions on Reliability, Vol. 63, Issue. 2, (2014), pp.620-633.
DOI: 10.1109/tr.2014.2315956
Google Scholar
[5]
Q. Miao, C. Tang, W. Liang and M. Pecht: Health assessment of cooling fan bearings using wavelet-based filtering. Sensors, Vol. 13, Issue. 1, (2013), pp.274-291.
DOI: 10.3390/s130100274
Google Scholar
[6]
X.H. Zhang, J.S. Kang, J.S. Zhao and D.C. Cao: Features for fault diagnosis and prognosis of gearbox. Chemical Engineering Transactions, Vol. 33, (2013), pp.1027-1032.
Google Scholar
[7]
X.H. Zhang, J.S. Kang, E. Bechhoefer and J.M. Zhao: A new feature extraction method for gear fault diagnosis and prognosis. Eksplotacja I Niezawodnosc-Maintenance and Reliability, Vol. 16, Issue. 2, (2014), pp.295-300.
Google Scholar
[8]
N. Sawalhi, R. Randall and H. Endo: The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis. Mechanical Systems and Signal Processing, Vol. 21, (2007).
DOI: 10.1016/j.ymssp.2006.12.002
Google Scholar
[9]
G.L. McDonald, Q. Zhao and M. Zuo: Maximum correlated Kurtosis deconvolution and application on gear tooth chip fault detection. Mechanical Systems and Signal Processing, Vol. 33, (2012), pp.237-255.
DOI: 10.1016/j.ymssp.2012.06.010
Google Scholar
[10]
R. Santhana, and N. Murali: A novel application of Lucy-Richardson deconvolution: bearing fault diagnosis. Journal of Vibration and Control, online published, (2013).
Google Scholar
[11]
W.H. Richardson: Bayesian-based iterative method of image restoration. Journal of Optical Society of America, Vol. 62, (1972), pp.55-59.
Google Scholar
[12]
L.B. Lucy: An iterative technique for the rectification of observed distribution. Astronomical Journal, Vol. 79, (1974), pp.745-775.
DOI: 10.1086/111605
Google Scholar
[13]
D. Wang, P.W. Tse and K.L. Tsui: An enhanced kurtogram method for fault diagnosis of rolling element bearings. Mechanical Systems and Signal Processing, Vol. 35, (2013), pp.176-179.
DOI: 10.1016/j.ymssp.2012.10.003
Google Scholar