Effect of Zr Content on Properties of Mg-Zr PM Damping Alloys

Article Preview

Abstract:

Mg-xZr damping alloys (x=0.6, 1.5, 2.5, 5, mass %) were prepared by PM (powder metallurgy ) technology, and effects of Zr contents on microstructure, mechanical properties and damping capacities of Mg-xZr damping alloys were researched by three-point bending test and DMA, etc. The results show that the microstructure become into strip-shaped morphology, more granular particles appear in the grain boundaries or inside grains, and the grains are more refined with the increase of Zr additions. Micro-hardness and bending strength of the Mg-xZr damping alloys increase with increasing addition of Zr, and reach the maximum value with Zr addition of 2.5%. The damping capacities of Mg-xZr alloys increase slowly with the temperature from 27°C to 100°C, and increase rapidly above 100°C. The damping peaks appear at temperature of 160°C. Mg-5%Zr alloy exhibits the highest damping capacity, and its tanf value reaches to 0.084. The temperature of the damping peak increases with increasing frequencies, showing the characteristic of relaxation damping.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

58-63

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.H. Gu, X.N. Zhang, Y.F. Qiu, M.Y. Gu: Compos. Sci. Technol. Vol. 65 (2005), p.1736.

Google Scholar

[2] J. CH. Xie, Q.A. Li, X.Q. Wang: Trans. Nonferrous Met. Soc. China. Vol. 18 (2008), p.303.

Google Scholar

[3] W.J. Ding: Magnesium Alloy Science and Technology (Science Publications, China 2007). (in Chinese).

Google Scholar

[4] D.Q. Wan, J. CH. Wang, L. Lin: Phys. B: Condens. Matter. Vol. 403 (2008), p.2438.

Google Scholar

[5] S.C. Wang, C.P. Chou: J. Mater. Process. Technol. Vol. 197 (2008), p.116.

Google Scholar

[6] N. Srikanth, X.L. Zhong, M. Gupta: Mater. Lett. Vol. 59 (2005), p.3851.

Google Scholar

[7] A. Granato, K. Lucke: J. Appl. Phys. Vol. 27 (1956), p.583.

Google Scholar

[8] D.Q. Wan, J.C. Wang, G.C. Yang: Mater. Sci. Eng. A. Vol. 517 (2009), p.117.

Google Scholar

[9] S.D. Sheng, D. Chen, Z.H. Chen: J. Alloys Compd. Vol. 470 (2009), p.17.

Google Scholar

[10] Z.R. Yang, S.Q. Wang, M.J. Ago, Y.T. Zhao, K.M. Chen, X.H. Cui: Comp. Part A. Vol. 39 (2008), p.1427.

Google Scholar

[11] N. Parvin, R. Assadifard, P. Safarzadeh: Mater. Sci. Eng. A. Vol. 492 (2008), p.134.

Google Scholar

[12] L. Lu, M.O. Lai, L. Froyen. J. Alloys Compd. Vol. 387 (2005), p.262.

Google Scholar

[13] K. Byeongho, D. Jeonghyeon: Mater. Sci. Eng. A. Vol. 527 (2010), p.6745.

Google Scholar

[14] X.S. HU, K. WU, M.Y. ZHENG: Scripta Mater. Vol. 54 (2006), p.1639.

Google Scholar

[15] J. Zhang, R.J. Perez, E.J. Lavernia: J. Mater. Sci. Vol. 28 (1993), p.2395.

Google Scholar

[16] L.H. Liao, X.Q. Zhang and X.F. Li: Mater. Lett. Vol. 61 (2007), p.231.

Google Scholar

[17] A. Granato, K. Lucke: J. Appl. Phys. Vol. 27 (1956), p.789.

Google Scholar

[18] O.A. Lambri, W. Riehemann, L.M. Salvatierra: Mater. Sci. Eng. A. Vol. 373 (2004), p.146.

Google Scholar

[19] T. Zuzanka, L. Pavel, R. Werne: Mater. Sci. Eng. A. Vol. 521-522 (2009), p.314.

Google Scholar

[20] S.K. Wu, S.H. Chang, T.Y. Chou: J. Alloys Compd. Vol. 465 (2008), p.210.

Google Scholar

[21] D.Q. Wan, B.L. He, G.Y. Xiong: Trans. Nonferrous Met. Soc. China. Vol. 20 (2010), p.448.

Google Scholar