Experimental Study on Formation of the Microstructure on Copper Film Using Ultraviolet Nanosecond Laser

Article Preview

Abstract:

In this paper, the ablated microstructures on copper film affected by ultraviolet nanosecond pulse laser are presented. The experimental system was consisted of two lasers, optics and controlling electronics. A 3000mW, 355nm Q-switched ultraviolet lasers was used to the micro-polishing experiments in the work. The repetition rate of the ultraviolet pulse laser is from single-shot to 100kHz, and the pulse width is less than 40ns. The sample used in experiment is copper film (200 nm) sputtered on glass. A series of experiments at different laser parameters and speed of work platform are done. The ablating experiments are also carried out on focusing and defocusing application in the laser direct writer. The results were analyzed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

395-400

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Choi H, Li X. Fabrication and application of micro thin film thermocouples for transient temperature measurement in nanosecond pulsed laser micromachining of nickel. Sensors and Actuators A: Physical, 2007, 136(1): 118-124.

DOI: 10.1016/j.sna.2007.01.007

Google Scholar

[2] Venkatakrishnan K, Sivakumar N R, Tan B., Fabrication of planar gratings by direct ablation using an ultrashort pulse laser in a common optical path configuration. Applied Physics A, 2003, 76(2): 143-146.

DOI: 10.1007/s003390201418

Google Scholar

[3] Matthias E, Reichling M, Siegel J, et al. The influence of thermal diffusion on laser ablation of metal films. Applied Physics A, 1994, 58(2): 129-136.

DOI: 10.1007/bf00332169

Google Scholar

[4] T.V. Kononenko, S.V. Garnov, S.M. Klimentov, V.I. Konov, Laser ablation of metals and ceramics in picosecond–nanosecond pulsewidth in the presence of different ambient atmospheres. Applied Surface Science 109/110 (1997): 48–51.

DOI: 10.1016/s0169-4332(96)00905-1

Google Scholar

[5] Bozsóki I, Balogh B, Gordon P. 355nm nanosecond pulsed Nd: YAG laser profile measurement, metal thin film ablation and thermal simulation. Optics & Laser Technology, 2011, 43(7): 1212-1218.

DOI: 10.1016/j.optlastec.2011.03.011

Google Scholar

[6] B.N. Chicbkov, C. Momma, S. Nolte, F. yon Alvensleben, A. Tiinnermann. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A . 1996, 63: 109-115.

DOI: 10.1007/bf01567637

Google Scholar

[7] Ionin A A, Klimachev Y M, Kotkov A A, et al. Carbon monoxide laser emitting nanosecond pulses with 10MHz repetition rate. Optics Communications, 2009, 282(2): 294-299.

DOI: 10.1016/j.optcom.2008.09.089

Google Scholar

[8] Gordon P, Balogh B, Sinkovics B. Thermal simulation of UV laser ablation of polyimide. Microelectronics Reliability, 2007, 47(2): 347-353.

DOI: 10.1016/j.microrel.2006.01.013

Google Scholar

[9] Huang, H; Jun, N; Jiang, MQ; et al., Nanosecond pulsed laser irradiation induced hierarchical micro/nanostructures on Zr-based metallic glass substrate, MATERIALS & DESIGN, 2016, 109: 153-161.

DOI: 10.1016/j.matdes.2016.07.056

Google Scholar

[10] Naghshine, Babak B.; Cosman, James A.; Kiani, Amirkianoosh, Synthesis of polycaprolactone-titanium oxide multilayer films by nanosecond laser pulses and electrospinning technique for better implant fabrication, JOURNAL OF APPLIED PHYSICS, 2016, 120(8).

DOI: 10.1063/1.4961537

Google Scholar

[11] G. Dumitru, B. Lüscher, M. Krack; Laser processing of hardmetals: Physical basics and applications, International Journal of Refractory Metals & Hard Materials, 2005, 23: 278–286.

DOI: 10.1016/j.ijrmhm.2005.04.020

Google Scholar

[12] Colina, M.; Morales-Vilches, A.; Voz, C.; et al., Laser Induced Forward Transfer for front contact improvement in silicon heteroj unction solar cells, Symposium on Laser Interaction with Advaned Materials: Fundamentals and Applications, FRANCE: 2014, APPLIED SURFACE SCIENCE, 2015, 336: 89-95.

DOI: 10.1016/j.apsusc.2014.09.172

Google Scholar

[13] Pong-Ryol, Jang; Tae-Sok, Jang; Nam-Chol, Kim; et al., Laser micro-polishing for metallic surface using UV nano-second pulse laser and CW laser, INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2016, 85(9-12): 2367-2375.

DOI: 10.1007/s00170-015-7992-3

Google Scholar

[14] J M Liu, Simple technique for measurements of pulsed Gaussian-beam spot sizes, Optics Letters, 1982, 7(5): 196-198.

DOI: 10.1364/ol.7.000196

Google Scholar

[15] D. Bartl, M. Ametowobla, F. Schmid; et al., Probing timescales during back side ablation of Molybdenum thin films with optical and electrical measurement techniques, Optics Express, 2013, 21(14): 16431-16443.

DOI: 10.1364/oe.21.016431

Google Scholar

[16] Anoop, K. K.; Harilal, S. S.; Philip, Reji; et al., Laser fluence dependence on emission dynamics of ultrafast laser induced copper plasma, JOURNAL OF APPLIED PHYSICS, 2016, 120(18).

DOI: 10.1063/1.4967313

Google Scholar

[17] Sobierajski, Ryszard; Jacyna, Iwanna; Dluzewski, Piotr; et al., Role of heat accumulation in the multi-shot damage of silicon irradiated with femtosecond XUV pulses at a 1 MHz repetition rate, OPTICS EXPRESS, 2016, 24(14): 15468-15477.

DOI: 10.1364/oe.24.015468

Google Scholar

[18] Douti, Dam-Be; Begou, Thomas; Lemarchand, Fabien; et al., Analysis of laser energy deposition leading to damage and ablation of HfO2 and Nb2O5 single layers submitted to 500 fs pulses at 1030 and 343 nm , APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2016, 122(7).

DOI: 10.1007/s00339-016-0197-2

Google Scholar

[19] Hongo, Motoharu; Matsuo, Shigeki, Subnanosecond-laser-induced periodic surface structures on prescratched silicon substrate, APPLIED PHYSICS EXPRESS, 2016, 9(6).

DOI: 10.7567/apex.9.062703

Google Scholar

[20] Williams, E.; Brousseau, E. B., Nanosecond laser processing of Zr41. 2Ti13. 8Cu12. 5Ni10Be22. 5 with single pulses, JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2016, 232: 34-42.

DOI: 10.1016/j.jmatprotec.2016.01.023

Google Scholar

[21] Tseng, Shih-Feng; Hsiao, Wen-Tse; Chung, Chien-Kai; et al., Investigation the interaction between the pulsed ultraviolet laser beams and PEDOT: PSS/graphene composite films, APPLIED SURFACE SCIENCE, 2015, 356: 486-491.

DOI: 10.1016/j.apsusc.2015.08.131

Google Scholar

[22] Sun, Zhanliang; Lenzner, Matthias; Rudolph, Wolfgang, Generic incubation law for laser damage and ablation thresholds, JOURNAL OF APPLIED PHYSICS, 2015, 117(7).

DOI: 10.1063/1.4913282

Google Scholar

[23] Demir, Ali Goekhan; Pangovski, Krste; O'Neill, William; et al., Laser micromachining of TiN coatings with variable pulse durations and shapes in ns regime, SURFACE & COATINGS TECHNOLOGY, 2014, 258: 240-248.

DOI: 10.1016/j.surfcoat.2014.09.021

Google Scholar

[24] Thi Trang Dai Huynh; Semmar, Nadjib, Dependence of ablation threshold and LIPSS formation on copper thin films by accumulative UV picosecond laser shots, APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2014, 116(3): 1429-1435.

DOI: 10.1007/s00339-014-8255-0

Google Scholar