[1]
Choi H, Li X. Fabrication and application of micro thin film thermocouples for transient temperature measurement in nanosecond pulsed laser micromachining of nickel. Sensors and Actuators A: Physical, 2007, 136(1): 118-124.
DOI: 10.1016/j.sna.2007.01.007
Google Scholar
[2]
Venkatakrishnan K, Sivakumar N R, Tan B., Fabrication of planar gratings by direct ablation using an ultrashort pulse laser in a common optical path configuration. Applied Physics A, 2003, 76(2): 143-146.
DOI: 10.1007/s003390201418
Google Scholar
[3]
Matthias E, Reichling M, Siegel J, et al. The influence of thermal diffusion on laser ablation of metal films. Applied Physics A, 1994, 58(2): 129-136.
DOI: 10.1007/bf00332169
Google Scholar
[4]
T.V. Kononenko, S.V. Garnov, S.M. Klimentov, V.I. Konov, Laser ablation of metals and ceramics in picosecond–nanosecond pulsewidth in the presence of different ambient atmospheres. Applied Surface Science 109/110 (1997): 48–51.
DOI: 10.1016/s0169-4332(96)00905-1
Google Scholar
[5]
Bozsóki I, Balogh B, Gordon P. 355nm nanosecond pulsed Nd: YAG laser profile measurement, metal thin film ablation and thermal simulation. Optics & Laser Technology, 2011, 43(7): 1212-1218.
DOI: 10.1016/j.optlastec.2011.03.011
Google Scholar
[6]
B.N. Chicbkov, C. Momma, S. Nolte, F. yon Alvensleben, A. Tiinnermann. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A . 1996, 63: 109-115.
DOI: 10.1007/bf01567637
Google Scholar
[7]
Ionin A A, Klimachev Y M, Kotkov A A, et al. Carbon monoxide laser emitting nanosecond pulses with 10MHz repetition rate. Optics Communications, 2009, 282(2): 294-299.
DOI: 10.1016/j.optcom.2008.09.089
Google Scholar
[8]
Gordon P, Balogh B, Sinkovics B. Thermal simulation of UV laser ablation of polyimide. Microelectronics Reliability, 2007, 47(2): 347-353.
DOI: 10.1016/j.microrel.2006.01.013
Google Scholar
[9]
Huang, H; Jun, N; Jiang, MQ; et al., Nanosecond pulsed laser irradiation induced hierarchical micro/nanostructures on Zr-based metallic glass substrate, MATERIALS & DESIGN, 2016, 109: 153-161.
DOI: 10.1016/j.matdes.2016.07.056
Google Scholar
[10]
Naghshine, Babak B.; Cosman, James A.; Kiani, Amirkianoosh, Synthesis of polycaprolactone-titanium oxide multilayer films by nanosecond laser pulses and electrospinning technique for better implant fabrication, JOURNAL OF APPLIED PHYSICS, 2016, 120(8).
DOI: 10.1063/1.4961537
Google Scholar
[11]
G. Dumitru, B. Lüscher, M. Krack; Laser processing of hardmetals: Physical basics and applications, International Journal of Refractory Metals & Hard Materials, 2005, 23: 278–286.
DOI: 10.1016/j.ijrmhm.2005.04.020
Google Scholar
[12]
Colina, M.; Morales-Vilches, A.; Voz, C.; et al., Laser Induced Forward Transfer for front contact improvement in silicon heteroj unction solar cells, Symposium on Laser Interaction with Advaned Materials: Fundamentals and Applications, FRANCE: 2014, APPLIED SURFACE SCIENCE, 2015, 336: 89-95.
DOI: 10.1016/j.apsusc.2014.09.172
Google Scholar
[13]
Pong-Ryol, Jang; Tae-Sok, Jang; Nam-Chol, Kim; et al., Laser micro-polishing for metallic surface using UV nano-second pulse laser and CW laser, INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2016, 85(9-12): 2367-2375.
DOI: 10.1007/s00170-015-7992-3
Google Scholar
[14]
J M Liu, Simple technique for measurements of pulsed Gaussian-beam spot sizes, Optics Letters, 1982, 7(5): 196-198.
DOI: 10.1364/ol.7.000196
Google Scholar
[15]
D. Bartl, M. Ametowobla, F. Schmid; et al., Probing timescales during back side ablation of Molybdenum thin films with optical and electrical measurement techniques, Optics Express, 2013, 21(14): 16431-16443.
DOI: 10.1364/oe.21.016431
Google Scholar
[16]
Anoop, K. K.; Harilal, S. S.; Philip, Reji; et al., Laser fluence dependence on emission dynamics of ultrafast laser induced copper plasma, JOURNAL OF APPLIED PHYSICS, 2016, 120(18).
DOI: 10.1063/1.4967313
Google Scholar
[17]
Sobierajski, Ryszard; Jacyna, Iwanna; Dluzewski, Piotr; et al., Role of heat accumulation in the multi-shot damage of silicon irradiated with femtosecond XUV pulses at a 1 MHz repetition rate, OPTICS EXPRESS, 2016, 24(14): 15468-15477.
DOI: 10.1364/oe.24.015468
Google Scholar
[18]
Douti, Dam-Be; Begou, Thomas; Lemarchand, Fabien; et al., Analysis of laser energy deposition leading to damage and ablation of HfO2 and Nb2O5 single layers submitted to 500 fs pulses at 1030 and 343 nm , APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2016, 122(7).
DOI: 10.1007/s00339-016-0197-2
Google Scholar
[19]
Hongo, Motoharu; Matsuo, Shigeki, Subnanosecond-laser-induced periodic surface structures on prescratched silicon substrate, APPLIED PHYSICS EXPRESS, 2016, 9(6).
DOI: 10.7567/apex.9.062703
Google Scholar
[20]
Williams, E.; Brousseau, E. B., Nanosecond laser processing of Zr41. 2Ti13. 8Cu12. 5Ni10Be22. 5 with single pulses, JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2016, 232: 34-42.
DOI: 10.1016/j.jmatprotec.2016.01.023
Google Scholar
[21]
Tseng, Shih-Feng; Hsiao, Wen-Tse; Chung, Chien-Kai; et al., Investigation the interaction between the pulsed ultraviolet laser beams and PEDOT: PSS/graphene composite films, APPLIED SURFACE SCIENCE, 2015, 356: 486-491.
DOI: 10.1016/j.apsusc.2015.08.131
Google Scholar
[22]
Sun, Zhanliang; Lenzner, Matthias; Rudolph, Wolfgang, Generic incubation law for laser damage and ablation thresholds, JOURNAL OF APPLIED PHYSICS, 2015, 117(7).
DOI: 10.1063/1.4913282
Google Scholar
[23]
Demir, Ali Goekhan; Pangovski, Krste; O'Neill, William; et al., Laser micromachining of TiN coatings with variable pulse durations and shapes in ns regime, SURFACE & COATINGS TECHNOLOGY, 2014, 258: 240-248.
DOI: 10.1016/j.surfcoat.2014.09.021
Google Scholar
[24]
Thi Trang Dai Huynh; Semmar, Nadjib, Dependence of ablation threshold and LIPSS formation on copper thin films by accumulative UV picosecond laser shots, APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2014, 116(3): 1429-1435.
DOI: 10.1007/s00339-014-8255-0
Google Scholar