The Influence of Donor-Doped Content on PTCR Effect of (Ba1-xSmx)TiO3 Based Ceramics Prepared by the Reduction Sintering-Reoxidation Method

Abstract:

Article Preview

We investigated the effect of the donor-doped content on the positive temperature coefficient of resistivity (PTCR) of (Ba1-xSmx)TiO3 (BST) Based Ceramics that were sintered at 1300 °C for 30 min in a reducing atmosphere and re-oxidized at 850 °C for 1 h. The results indicated that the resistance jump first increased and then decreased with an increase of the donor-doped concentration. Moreover, the specimens achieved a low room temperature resistivity of 383.1 Ω·cm at a donor-doped content and exhibited a pronounced PTCR characteristics with a resistance jump of 3.1 orders of magnitude. Furthermore, the RT reisistivity of the samples reduced and increased with the increasing of the donor-dopant content in the range of 0.1−0.5 mol% Sm3+. In addition, the effect of the Sm3+-doped concentration on the grain size of the ceramics was investigated in our paper.

Info:

Periodical:

Edited by:

Z.S. Liu, L.P. Xu, X.D. Liang, Z.H. Wang and H.M. Zhang

Pages:

517-520

Citation:

X. X. Cheng et al., "The Influence of Donor-Doped Content on PTCR Effect of (Ba1-xSmx)TiO3 Based Ceramics Prepared by the Reduction Sintering-Reoxidation Method", Advanced Materials Research, Vol. 1015, pp. 517-520, 2014

Online since:

August 2014

Export:

Price:

$38.00

* - Corresponding Author

[1] Y.K. Chung and S.C. Choi: J. Korean Chem. Soc. Vol. 46, No. 3 (2009), pp.330-335.

[2] Z.C. Li, H. Zhang, X.D. Zou and B. Bergman: Mater. Sci. Eng. , B Vol. 116 (2005), pp.34-39.

[3] M.W. Mancini and P.I. Paulin Filho: J. Appl. Phys. Vol. 100 (2006), p.104501.

[4] J. Illingsworth, H.M. AI-Allak, A.W. Brinkman and J. Woods: J. Appl. Phys. Vol. 67, No. 4 (1990), p. (2088).

[5] W. Heywang: Solid-State Electron. Vol. 3 (1961), p.51.

[6] W. Heywang: J. Am. Ceram. Soc. Vol. 47, No. 10 (1964), p.484.

[7] G.H. Jonker: Solid-State Electron. Vol. 7 (1964), pp.895-903.

[8] X.X. Cheng, D.X. Zhou, Q.Y. Fu, S.P. Gong, D.C. Zhao: J. Mater. Sci.: Mater. Electron. Vol. 23, No. 12 (2012), pp.2202-2209.

[9] H. Niimi, K. Mihara, Y. Sakabe and M. Kuwabara: Jpn. J. Appl. Phys. Vol. 46, No. 10A (2007), pp.6715-6718.

DOI: https://doi.org/10.1143/jjap.46.6715

[10] X.X. Cheng, D.X. Zhou, Q.Y. Fu, S.P. Gong, Y.X. Qin: J. Phys. D: Appl. Phys. Vol. 45, No. 38 (2012), p.385306 (7pp).

[11] P.H. Xiang, H. Harinaka, H. Takeda, and so on: J. Appl. Phys. Vol. 104, (2008), p.094108.

[12] H. Niimi, T. Ishikawa, K. Mihara, Y. Sakabe and M. Kuwabara: Jpn. J. Appl. Phys. Vol. 46, No. 2 (2007), pp.675-680.

[13] P.H. Xiang, H. Harinaka, H. Takeda, and so on, J. Appl. Phys. Vol. 104, (2008), 094108.

[14] Y.K. Chung and S.C. Choi, J. Korean Chem. Soc. 46, 330–335 (2009).

[15] X.X. Cheng, D.X. Zhou, Q.Y. Fu, Haining Cui: J. Mater. Sci.: Mater. Electron. Vol. 25, No. 2 (2014), pp.1105-1111.

[16] D.X. Zhou, X.X. Cheng, Q.Y. Fu, S.P. Gong, D.C. Zhao: Ceram. Int. Vol. 38, No. 8 (2012), p.6389–6397.