Difference in Physicochemical Property of β-Glucan from Barley Flour and Bran

Article Preview

Abstract:

Two kinds of β-glucan were extracted from barley flour and bran, with the purity of 75.3% and 76.2% respectively. Molecular size characterization was caarried out with high performance size exclusion chromatograhy combined with a multi-angle laser light scattering and a refractive index detector (HPSEC-MALL) , the molecular weight (Mw) of β-glucan from barley flour and bran was 2.262×104,7.128×104. X-ray diffraction and thermodynamics tests indicated that all β-glucans were noncrystalline but thermostable polymers. Differential scanning of calorimetry (DSC) showed the presence of peak related with water loss, confirmed by thermogravimetric analysis (TGA), the β-glucan from barley bran had higher onset temperature (T0=49.89°C) and peak temperature (TP=197°C). In scanning electron microscope (SEM) observations, the β-glucan from barley bran showed more tight surface,which could be caused by higher molecular weight.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1033-1034)

Pages:

209-215

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kahlon T S, Chow F I, Knuckles B E, et al. Cholesterol-lowering effects in hamsters of β-glucan-enriched barley fraction, dehulled whole barley, rice bran, and oat bran and their combinations[J]. Cereal chemistry, 1993, 70(4): 435-440.

DOI: 10.1094/cchem.2003.80.3.260

Google Scholar

[2] Wood P J. Evaluation of oat bran as a soluble fibre source. Characterization of oat β-glucan and its effects on glycaemic response[J]. Carbohydrate polymers, 1994, 25(4): 331-336.

DOI: 10.1016/0144-8617(94)90059-0

Google Scholar

[3] Wolever T M S, Tosh S M, Gibbs A L, et al. Physicochemical properties of oat β-glucan influence its ability to reduce serum LDL cholesterol in humans: a randomized clinical trial[J]. The American journal of clinical nutrition, 2010, 92(4): 723-732.

DOI: 10.3945/ajcn.2010.29174

Google Scholar

[4] Schneeman B O. Dietary fiber and gastrointestinal function[J]. Nutrition Research, 1998, 18(4): 625-632.

DOI: 10.1016/s0271-5317(98)00049-9

Google Scholar

[5] Skendi A, Biliaderis C G, Lazaridou A, et al. Structure and rheological properties of water soluble β-glucans from oat cultivars of<i> Avena sativa</i> and<i> Avena bysantina</i>[J]. Journal of Cereal Science, 2003, 38(1): 15-31.

DOI: 10.1016/s0733-5210(02)00137-6

Google Scholar

[6] Bacic A, Stone B A. Chemistry and organization of aleurone cell wall components from wheat and barley[J]. Functional Plant Biology, 1981, 8(5): 475-495.

DOI: 10.1071/pp9810475

Google Scholar

[7] Fincher G B. Morphology and chemical composition of barley endosperm cell walls[J]. Journal of the Institute of Brewing, 1975, 81(2): 116-122.

DOI: 10.1002/j.2050-0416.1975.tb03672.x

Google Scholar

[8] Lazaridou A, Biliaderis C G. Cryogelation of cereal β-glucans: structure and molecular size effects[J]. Food Hydrocolloids, 2004, 18(6): 933-947.

DOI: 10.1016/j.foodhyd.2004.03.003

Google Scholar

[9] Lazaridou A, Biliaderis C G, Izydorczyk M S. Molecular size effects on rheological properties of oat β-glucans in solution and gels[J]. Food Hydrocolloids, 2003, 17(5): 693-712.

DOI: 10.1016/s0268-005x(03)00036-5

Google Scholar

[10] Ryu J H, Lee S, You S G, et al. Effects of barley and oat β-glucan structures on their rheological and thermal characteristics[J]. Carbohydrate polymers, 2012, 89(4): 1238-1243.

DOI: 10.1016/j.carbpol.2012.04.025

Google Scholar

[11] Sedmak J J, Grossberg S E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250[J]. Analytical biochemistry, 1977, 79(1): 544-552.

DOI: 10.1016/0003-2697(77)90428-6

Google Scholar

[12] Wood P J. Oat β-glucan-physicochemical properties and physiological effects[J]. Trends in Food Science & Technology, 1991, 2: 311-314.

DOI: 10.1016/0924-2244(91)90733-y

Google Scholar

[13] Chaires-Martínez L, Salazar-Montoya J A, Ramos-Ramírez E G. Physicochemical and functional characterization of the galactomannan obtained from mesquite seeds (Prosopis pallida)[J]. European Food Research and Technology, 2008, 227(6): 1669-1676.

DOI: 10.1007/s00217-008-0892-0

Google Scholar

[14] Vendruscolo C W, Ferrero C, Pineda E A G, et al. Physicochemical and mechanical characterization of galactomannan from<i> Mimosa scabrella</i>: Effect of drying method[J]. Carbohydrate Polymers, 2009, 76(1): 86-93.

DOI: 10.1016/j.carbpol.2008.09.028

Google Scholar

[15] Varma A J, Kokane S P, Pathak G, et al. Thermal behavior of galactomannan guar gum and its periodate oxidation products[J]. Carbohydrate polymers, 1997, 32(2): 111-114.

DOI: 10.1016/s0144-8617(96)00155-5

Google Scholar

[16] Zohuriaan M J, Shokrolahi F. Thermal studies on natural and modified gums[J]. Polymer Testing, 2004, 23(5): 575-579.

DOI: 10.1016/j.polymertesting.2003.11.001

Google Scholar

[17] Wang L C, Di L Q, Liu R, et al. Characterizations and microsphere formulation of polysaccharide from the marine clam (<i> Mactra veneriformis</i>)[J]. Carbohydrate polymers, 2013, 92(1): 106-113.

DOI: 10.1016/j.carbpol.2012.08.084

Google Scholar

[18] Zia K M, Bhatti I A, Barikani M, et al. XRD studies of chitin-based polyurethane elastomers[J]. International journal of biological macromolecules, 2008, 43(2): 136-141.

DOI: 10.1016/j.ijbiomac.2008.04.009

Google Scholar

[19] Agbenorhevi J K, Kontogiorgos V, Kirby A R, et al. Rheological and microstructural investigation of oat β-glucan isolates varying in molecular weight[J]. International journal of biological macromolecules, 2011, 49(3): 369-377.

DOI: 10.1016/j.ijbiomac.2011.05.014

Google Scholar