Numerical Techniques for Predicting Pyroshock Responses of Aerospace Structures

Article Preview

Abstract:

Pyroshock responses of aerospace structures/systems are significantly important for design and valuation of space systems because it is a harsh environment for the systems, especially the electrical components. But the designers strongly rely on tests because, up to now, there have not been effective analytical and even numerical techniques for this problem. Fortunately, a number of researchers have been making efforts to build numerical techniques for structural responses prediction under this kind of special dynamic environments. This paper presents the techniques of time-history analysis, response spectrum analysis, statistical energy analysis and a synthetic technique composed of hydrocode analysis, time-domain finite element analysis (FEA) and statistical energy analysis. Further work and development trends are discussed in the end.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 108-111)

Pages:

1043-1048

Citation:

Online since:

May 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.J. Mao and Y.L. Li: Missile and Space Vehicle No. 4 (2007), pp.37-44.

Google Scholar

[2] R.M. Zimmerman: Pyroshock: Bibliography (SAND-93-0331C, 1993).

Google Scholar

[3] IEST Press Release: IEST Publishes $ew RP on Pyroshock Testing, on http: /www. iest. org.

Google Scholar

[4] Test Method Standard: Environmental Engineering Considerations and Laboratory Tests (MIL-STD-810F, Department of Defense, USA, 2000).

DOI: 10.17764/jiet.44.3.f45015p217843r36

Google Scholar

[5] NASA Technical Standard: Pyroshock Test Criteria (NASA-STD-7003, National Aeronautics and Space Administration, USA, 1999).

Google Scholar

[6] Y.J. Mao, X.H. Yue, H.Y. Huang, B.L. Niu and H.J. Huang: Applied Mechanics and Materials Vols. 20-23 (2010), pp.1458-1462.

Google Scholar

[7] M. Chen, Y.K. Sui and Z.G. Yang: Initiators & Pyrotechnics No. 5 (2007), pp.5-8.

Google Scholar

[8] Z.G. Yang, M. Chen and Y.K. Sui: Journal of Projectiles, Rockets, Missiles and Guidance Vol. 27 (2007), pp.127-130.

Google Scholar

[9] R.F. Wang, F.Y. Lu, Z.G. Yang and G. Lü: Missiles and Space Vehicles No. 4 (2007), pp.17-20.

Google Scholar

[10] M. de Benedetti, G. Garofalo, M. Zumpano and R. Barboni: Acta Astronautica Vol. 60 (2007), pp.947-956.

DOI: 10.1016/j.actaastro.2006.11.011

Google Scholar

[11] Z.Y. Liu, J. Luo and G.A. Tang: Spacecraft Environment Engineering Vol. 25 (2008), pp.467-470.

Google Scholar

[12] H.X. Sun and R.X. Fan: Missiles and Space Vehicles No. 4 (2004), pp.15-18.

Google Scholar

[13] E.L. Wilson, A. Der Kiereghian and E. Bayo: Earthquake and Structural Dynamics Vol. 9 (1981), p.187.

Google Scholar

[14] Regulatory Guide 1. 92, Revision 1 (Nuclear Regulatory Commission, USA, 1976).

Google Scholar

[15] G.J. O'Hara and R.O. Belsheim: Interim Design Values for Shock Design of Shipboard Equipment (NRL Memorandum Report 1396, U.S. Naval Research Laboratory, WA, 1963).

Google Scholar

[16] D.G. Pan, M.L. Lou and L.C. Fan: Journal of Tongji University Vol. 29 (2001), pp.1213-1219.

Google Scholar

[17] F.L. Bai, H.N. Li and G.X. Wang: Journal of Earthquake Engineering and Engineering Vibration Vol. 28 (2008), pp.35-42.

Google Scholar

[18] J.W. Lou, Y. Long and X. Zhou: Explosion and Shock Waves Vol. 23 (2003), pp.41-46.

Google Scholar

[19] W. Feng, W. Li and G.M. Wu: Shanghai Shipbuilding No. 2 (2009), pp.7-10.

Google Scholar

[20] P. Kohnke: A$SYS, Inc. Theory Manual, 001369, 12th Edition (SAS IP, Inc, PA, 2001).

Google Scholar

[21] R.H. Lyon: Statistical Energy Analysis of Dynamical Systems: Theory and Applications (MIT Press, Cambridge, MA, 1975).

Google Scholar

[22] X.J. Wu and S.J. Zhu: Journal of Wuhan University of Technology (Transportation Science & Engineering) Vol. 28 (2004), pp.212-215.

Google Scholar

[23] K. Renji, P.S. Nair and S. Narayanan: Journal of Sound and Vibration Vol. 289 (2006), pp.851-870.

Google Scholar

[24] T. Yamazaki, M. Kondo and Y. Asahara: JSAE Review Vol. 24 (2003), pp.263-267.

Google Scholar

[25] M.J. Kim, H.S. Kim and J.Y. Sohn: Applied Acoustics Vol. 62 (2001), pp.601-616.

Google Scholar

[26] R.J.M. Craik: Applied Acoustics Vol. 64 (2003), pp.325-341.

Google Scholar

[27] P. Hynna, P. Klinge and J. Vuoksinen: Journal of Sound and Vibration Vol. 180 (1995), pp.583-607.

Google Scholar

[28] J.A. Steel: Journal of Sound and Vibration Vol. 193 (1996), pp.691-703.

Google Scholar

[29] R.E. Powell and L.R. Quartararo, in: Statistical Energy Analysis, edited by K.H. Hsu, D.J. Neske and A. Akay, Winter Meeting ASME, Boston, MA 3 (1987), pp.3-7.

Google Scholar

[30] D. Lednik: The Application of Transient Statistical Energy Analysis and Wave Propagation Approach to Coupled Structures (Ph. D. Thesis of Southampton, 1994).

Google Scholar

[31] R.J. Pinnington and D. Lednik: Journal of Sound and Vibration Vol. 189 (1996), pp.249-264.

Google Scholar

[32] Q.Z. Wang, W.B. Song and B. Liu: Structure & Environment Engineering Vol. 25 (1998), pp.7-12.

Google Scholar

[33] B.F. Song and Z.Q. Yuan: Packaging Engineering Vol. 22 (2001), pp.11-12, 29.

Google Scholar

[34] F.M. Zhou, J. Zhang and Y. Qi: Journal of Shandong University of Technology (Sci & Tech) Vol. 20 (2006), pp.84-87.

Google Scholar

[35] X.T. Nie, D.P. Fan and F.J. Chen: Journal of Vibration and Shock Vol. 26 (2007), pp.140-145.

Google Scholar

[36] S.C. Ding, S.J. Zhu and K. Liu: Journal of Wuhan University of Technology (Transportation Science & Engineering) Vol. 33 (2009), pp.287-290.

Google Scholar

[37] Y.A. Lee and W. Henricks: DGLR/AIAA Paper 92-02-167 (1992).

Google Scholar

[38] A.K. Singh, in: Proceedings of 39th Annual Technical Meeting of Institute of Environment Science (1993), pp.267-272.

Google Scholar

[39] E.C. Dalton, B.S. Chambers, B. Katz and M.D. White, in: Proceedings of 66th Shock and Vibration Symposium, Vol. II (1995), pp.195-201.

Google Scholar