The Application of Support Vector Regression Method for Solving the Inverse ECG Problem

Article Preview

Abstract:

The problem of noninvasive computing the epicardial surface potentials from torso surface potentials constitutes one form of the inverse problem of ECG, which can be acted as a regression problem with multi-input and multi-output. In this study, the SVR method is invoked to predict the inverse solutions, which compared with the common regularization methods. To build an effective SVR model, the hyper-parameters of SVR are set carefully by using the grid search optimization method. The experiment results shows that SVR method is an effective way for solving the inverse ECG problem, which can reconstruct more accurate epicardial surface potentials distribution than the common regularization method, such as Tikhonv method and LSQR method.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 108-111)

Pages:

828-833

Citation:

Online since:

May 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Calvetti and L. Reichel, Tikhonov regularization of large linear problems, BIT Numer. Math. 43 (2003) , pp.263-283.

Google Scholar

[2] C. Ramanathan, P. Jia, R. Ghamen, D. Calvetti and Y. Rudy, Noninvasive electrocardiographic imaging (ECGI): application of the generalized minimal residual (GMRes) method, Ann. Biomed. Eng. 31 (2003) , pp.981-994.

DOI: 10.1114/1.1588655

Google Scholar

[3] M. Jiang, L. Xia, G. Shou and M. Tang, Combination of the LSQR method and a genetic algorithm for solving the electrocardiography inverse problem, Phys. Med. Biol. 52(2007), pp.1277-94.

DOI: 10.1088/0031-9155/52/5/005

Google Scholar

[4] V. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, New York, USA, (1995).

Google Scholar

[5] S. S. Keerthi, Efficient tuning of SVM hyper-parameters using radius/margin bound and iterative algorithms, IEEE Transaction on Neural Networks, 13(5) (2002), pp.1225-1229.

DOI: 10.1109/tnn.2002.1031955

Google Scholar

[6] A.J. Smola, B. Sch¨olkopf, A Tutorial on Support Vector Regression, Statistics and Computing 14(2004), pp.199-222.

DOI: 10.1023/b:stco.0000035301.49549.88

Google Scholar

[7] F. E. H. Tay, and L. Cao, Application of support vector machinesin financial time series forecasting, Omega, 29(4) (2001), pp.309-317.

DOI: 10.1016/s0305-0483(01)00026-3

Google Scholar

[8] K. Duan, S. S. Keerthi, and A. N. Poo, Evaluation of simple performance measures for tuning SVM hyperparameters, Neurocomputing, 51(4) (2003), pp.41-59.

DOI: 10.1016/s0925-2312(02)00601-x

Google Scholar

[9] C. C. Chang and C. J. Lin. LIBSVM: a library for support vector machines, 2001. Software available at http: /www. csie. ntu. edu. tw/ ~cjlin/libsvm.

Google Scholar

[10] L. Xia, M. Huo, Q. Wei, F. Liu and S. Crozier, Analysis of cardiac ventricular wall motion based on a threedimensional electromechanical biventricular model, Phys. Med. Biol. 50, pp.1901-17, (2005).

DOI: 10.1088/0031-9155/50/8/018

Google Scholar

[11] H. D. Simms and D. B. Geselowitz, Computation of heart surface potentials using the surface source model, J. Cardiovasc. Electrophysiol. 6, pp.522-31, (1995).

DOI: 10.1111/j.1540-8167.1995.tb00425.x

Google Scholar

[12] M. F. Jiang, L. Xia, G. F. Shou, Q. Wei, F. Liu, and S. Crozier, Two Hybrid Regularization Frameworks for Solving the Electrocardiography Inverse Problem, Phys. Med. Biol., vol 53, pp.5151-5164, (2008).

DOI: 10.1088/0031-9155/53/18/020

Google Scholar