Synthesis of Hybrid Fe3O4–Silica–M(Zn, Cu, Ni) Submicrospheres and its Application for Adsorption on Bovine Hemoglobin

Article Preview

Abstract:

Magnetic metal silica submicrospheres were produced from silica coated on magnetic nanoparticles using well controlled hydrothermalled method and were characterized by TEM, XRD, FTIR, XPS. The well-designed mesoporous magnetic metal silciate had a large specific area, high magnetization. Firstly, SiO2-coated maghemite (Fe3O4@SiO2 composites) were synthesized by an sol-gel method, in which the iron ferrous chloride as well as TEOS acted as the precursor for maghemite and SiO2, respectively. The Fe3O4@SiO2 composites revealed a core-shell structure, Then, Fe3O4@SiO2/X3Si2O5(OH)4(X = Ni, Cu, Zn) was obtained by hydrothermalled with metal chloride. The resulting composites show not only a magnetic response to an externally applied magnetic field, but also can be a good adsorbent for bovine hemoglobin in the ambient temperature.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1120-1121)

Pages:

903-908

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Horák, M. Babič, H. Macková, M. J. Beneš, J. Sep. Sci. 2007, 30, 1751.

Google Scholar

[2] H. M. Chen, D. W. Qi, C. H. Deng, P. Y. Yang and X. M. Zhang, Proteomics 2009, 9, 380.

Google Scholar

[3] J. Porath, J. Carlson, I. Olsson, G. Belfrage, Nature, 1975, 258, 598.

Google Scholar

[4] S. M. O'Brien, O. R. T. Thomas, P. Dunnill, J. Biotechnol. 1996, 50, 13.

Google Scholar

[5] H.W. Gu, K. M. Xu, C. J. Xu and B. Xu, Chem. Commun. 2006, 941.

Google Scholar

[6] M. Franzreb, H. M. Siemann, T. J. Hobley, O. R. Thomas, Appl. Microbiol. Biotechnol. 2006, 70, 505.

Google Scholar

[7] Q. Wang, J. L. Mynar, M. Yoshida, E. Lee, M. Lee, K. Okuro,K. Kinbara and T. Aida, Nature, 2010, 463, 339.

DOI: 10.1038/nature08693

Google Scholar

[8] J. E. Martin, A. J. Patil, M. F. Butler and S. Mann, Adv. Funct. Mater., 2011, 21, 674. Zhuk, R. Mirza and S. Sukhishvili, ACS Nano, 2011, 5, 8790.

Google Scholar

[9] K. Breuer, J. H. Teles, D. Demuth, H. Hibst, A. Schafer, S. Brode and H. Domgorgen, Angew. Chem., Int. Ed., 1999, 38, 1401.

DOI: 10.1002/(sici)1521-3773(19990517)38:10<1401::aid-anie1401>3.0.co;2-4

Google Scholar

[10] J. C. Park, H. J. Lee, J. U. Bang, K. H. Park and H. Song, Chem. Commun., 2009, 7345.

Google Scholar

[11] J. S. An, J. H. Noh, I. S. Cho, H. S. Roh, J. Y. Kim, H. S. Han and K. S. Hong, J. Phys. Chem. C, 2010, 114, 10330.

Google Scholar

[12] L. M. Xiong, J. L. Shi, J. L. Gu, W. H. Shen, X. P. Dong, H. R. Chen, L. X. Zhang, J. H. Gao and M. L. Ruan, Small, 2005, 1, 1044.

Google Scholar

[13] E. Ruiz-Hitzky, M. Darder, P. Aranda, M. A. M. del Burgo andG. del Real, Adv. Mater., 2009, 21, 4167.

DOI: 10.1002/adma.200900181

Google Scholar

[14] C. Wan and B. Chen, Nanoscale, 2011, 3, 693.

Google Scholar

[15] J. Zheng, B. H. Wu, Z. Y. Jiang, Q. Kuang, X. L. Fang, Z. X. Xie, R. B. Huang and L. S. Zheng, Chem. –Asian J., 2010, 5, 1439.

Google Scholar

[16] Y. Q. Wang, G. Z. Wang, H. Q. Wang, C. H. Liang, W. P. Cai and L. D. Zhang, Chem. –Eur. J., 2010, 16, 3497.

Google Scholar

[17] Y. Q. Wang, G. Z. Wang, H. Q. Wang, W. P. Cai and L. D. Zhang, Chem. Commun., 2008, 6555.

Google Scholar

[18] Z. Wu and D. Zhao, Chem. Commun., 2011, 47, 3332.

Google Scholar

[19] M. Zhang, D. Cheng, X. W . He, L.X. Chen, and Y. K. Zhang, Chem Asian J. 2010, 5, 1332.

Google Scholar

[20] Z. Y. Ma, X. Q. Liu, Y. P. Guan, H. Z. Liu, Colloids Surf. A, 2006, 275, 87.

Google Scholar