[1]
J. Goldemberg, Ethanol for a sustainable energy future, Science. 315 (2007) 673-676.
Google Scholar
[2]
R.C. Kuhad, A. Singh, K.E. Ericksson, Microorganisms and enzymes involved in the degradation of plant fiber cell walls, Adv Biochem Eng Biotechnol. 57 (1997) 45–125.
Google Scholar
[3]
N. Bansal, R. Tewari, R. Soni, S.K. Soni, Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues, Waste. Manag,. 32 (2011) 1341–1346.
DOI: 10.1016/j.wasman.2012.03.006
Google Scholar
[4]
Y.B. Qu, Progress in basic and technological research of enzyme system for lignocellulosics biodegradation, Journal of Shandong University (Natural Science). 46 (2011) 160-170.
Google Scholar
[5]
C. Lei, J. Zhang, L. Xiao, J. Bao, An alternative feedstock of corn meal for industrial fuel ethanol production: delignified corncob residue, Bioresour Technol. 167 (2014) 555–559.
DOI: 10.1016/j.biortech.2014.06.005
Google Scholar
[6]
R. Sun, X. L . Song, R.C. Sun, J.X. Jiang, Effect of lignin content on enzymatic hydrolysis of furfural residues. Bioresources. 6 (2011) 317–328.
DOI: 10.15376/biores.6.1.317-328
Google Scholar
[7]
E. Schuster, N. Dunn-Coleman, J.C. Frisvad, P.W. Van Dijck, On the safety of Aspergillus niger – a review, Appl Microbiol Biotechnol. 59 (2002) 426–435.
Google Scholar
[8]
S.Y. Jiang, H.Q. Shi, M.F. GAO, Y.P. Liu, X.M. Fang, G.F. Dai, G.Y. Zhu, X.Y. Deng, Y.F. Zhang, B. Zhang, X.D. Shang, J. Wu, Cellulase Production by Submerged Fermentation Using Biological Materials of Corncob residue with Aspergillus niger FC-1, Advanced Materials Research, 648 (2013).
DOI: 10.4028/www.scientific.net/amr.648.116
Google Scholar
[9]
U.F. Rodríguez-Zúñiga, V.B. Neto, S. Couri, S. Crestana, C.S. Farinas, Use of spectroscopic and imaging techniques to evaluate pretreated sugarcane bagasse as a substrate for cellulase production under solid-state fermentation, Applied Biochemistry and Biotechnology. 172 (2014).
DOI: 10.1007/s12010-013-0678-0
Google Scholar
[10]
T.K. Ghose, Measurement of cellulase activity, Pure and Applied Chemistry. 59 (1987) 257-268.
Google Scholar
[11]
M.S. Chandra, B. Viswanath, B.R. Reddy, Cellulolytic enzymes on lignocellulosic substrates in solid state fermentation by Aspergillus niger, Indian J. Microbiol. 47 (2007) 23–3282.
DOI: 10.1007/s12088-007-0059-x
Google Scholar
[12]
R.R. Singhania, R.K. Sukumaran, A.K. Patel, C. Larroche, A. Pandey, Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases, Enzyme and Microbial Technology. 46 (2010).
DOI: 10.1016/j.enzmictec.2010.03.010
Google Scholar
[13]
R.K. Sukumaran, R.R. Singhania, G.M. Mathew, A. Pandey, Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bioethanol production, Renew Energ. 34 (2009) 421–424.
DOI: 10.1016/j.renene.2008.05.008
Google Scholar
[14]
Y. Feng, J. Jiang, L. Zhu, L. Yue, J. Zhang, S. Han, Effects of tea saponin on glucan conversion and bonding behaviour of cellulolytic enzymes during enzymatic hydrolysis of corncob residue with high lignin content, Applied biochemistry and biotechnology. 172 (2014).
DOI: 10.1186/1754-6834-6-161
Google Scholar
[15]
L.X. Bu, Y. Xing, H.L. Yu, Y.X. Gao, J.X. Jiang, Comparative study of sulfite pretreatments for robust enzymatic saccharification of corncob residue, Biotechnology for Biofuels. 5 (2012) 87.
DOI: 10.1186/1754-6834-5-87
Google Scholar