Novel Multiferroic Lead-Free BaTiO3/FeBSi Composite Films

Article Preview

Abstract:

“Green” multiferroic BaTiO3/FeBSi composite films were grown by pulsed laser deposition and ion beam sputtering on general Pt/Ti/SiO2/Si substrates. Room temperature X-ray diffraction and Raman scattering show that the crystal structures of BaTiO3 and FeBSi are tetragonal and amorphous, respectively, and no additional or intermediate phase peaks appears in the composite films. A cross-sectional scanning electron microscopy image clearly demonstrates a 2-2 type structure with sharp interface between the top FeBSi layer and bottom BaTiO3 layer. The magnetic properties of the top FeBSi are obviously modified by the bottom BaTiO3. The composite films show obvious ferroelectric feature.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 123-125)

Pages:

157-160

Citation:

Online since:

August 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. -W. Nan, M.I. Bichurin, S. Dong, D. Viehland and G. Srinivasan: Journal of Applied Physics 103 (2008), p.031101.

Google Scholar

[2] K.F. Wang, J. -M. Liu and Z.F. Ren: Advances in Physics 58 (2009), p.321.

Google Scholar

[3] J. Zhai, Z. Xing, S. Dong, J. Li and D. Viehland: Journal of the American Ceramic Society 91 (2008), p.351.

Google Scholar

[4] Y. -H. Chu, L.W. Martin, M.B. Holcomb and R. Ramesh: Materials Today 10 (2007), p.16.

Google Scholar

[5] S. Priya, R. Islam, S. Dong and D. Viehland: J Electroceram 19 (2007), p.147.

Google Scholar

[6] Z. Li, Y. Wang, Y. Lin and C. Nan: Physical Review B 79 (2009), p.180406.

Google Scholar

[7] C.H. Sim, Z.Z. Pan and J. Wang: Journal of Applied Physics 105 (2009), p.084113.

Google Scholar

[8] U. Laletsin, N. Padubnaya, G. Srinivasan and C.P. DeVreugd: Applied Physics A: Materials Science & Processing 78 (2004), p.33.

Google Scholar

[9] S. Dong, J. Zhai, J. Li and D. Viehland: Applied Physics Letters 89 (2006), p.252904.

Google Scholar

[10] C. Pettiford, J. Lou, L. Russell and N.X. Sun: Applied Physics Letters 92 (2008), p.122506.

Google Scholar

[11] J. Zhai, S. Dong, Z. Xing, J. Li and D. Viehland: Applied Physics Letters 89 (2006), p.083507.

Google Scholar

[12] S. Dong, J. Zhai, Z. Xing, J. Li and D. Viehland: Applied Physics Letters 91 (2007), p.022915.

Google Scholar

[13] Z. Xing, J. Li and D. Viehland: Applied Physics Letters 93 (2008), p.013505.

Google Scholar

[14] Y. Jia, S.W. Or, J. Wang, H.L.W. Chan, X. Zhao and H. Luo: Journal of Applied Physics 101 (2007), p.104103.

Google Scholar

[15] S.N. Babu, K. Srinivas and T. Bhimasankaram: Journal of Magnetism and Magnetic Materials 321 (2009), p.3764.

Google Scholar

[16] N.J. Decristofaro, G.E. Fish, S.M. Lindquist and P.J. Stamatis: United States Patent (2006), p. 7011718B2.

Google Scholar

[17] Information On http: /www. metglas. com/downloads/msds/msds2605sa1. pdf.

Google Scholar

[18] C. -W. Nan, G. Liu and Y. Lin: Applied Physics Letters 83 (2003), p.4366.

Google Scholar

[19] H. Zheng, J. Wang, S.E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A. Roytburd and R. Ramesh: Science 303 (2004), p.661.

DOI: 10.1126/science.1094207

Google Scholar

[20] W. -S. Cho and E. Hamada: Journal of Alloys and Compounds 266 (1998), p.118.

Google Scholar

[21] U.D. Venkateswaran, V.M. Naik and R. Naik: Physical Review B 58 (1998), p.14256.

Google Scholar

[22] M.S. Chen, Z.X. Shen, S.H. Tang, W.S. Shi, D.F. Cui and Z.H. Chen: Journal of Physics: Condensed Matter 12 (2000), p.7013.

Google Scholar

[23] Y. -C. Chen, T. -H. Hong, Z. -X. Jiang and Q. -R. Lin: Journal of Applied Physics 103 (2008), p. 07E305. -1200 -800 -400 0 400 800 1200 -0. 012 -0. 008 -0. 004 0. 000 0. 004 0. 008 0. 012 P (C/cm2) E (kV/cm) 3BTO/FeBSi-2.

Google Scholar