Synthesis of Nickel Silicide/Silicon/Silica Composite Nanostructures by Coevaporation of SiO Powder and Nickel Formate

Article Preview

Abstract:

Nickel silicide/silicon/silica composite nanostructure, i.e., Ni31Si12/Si/SiO2, was synthesized successfully by a coevaporation method, using nickel formate and SiO powder as the source materials. The structure of product was characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), transmission electron microscopy (TEM) and high resolution transmission electron microscope (HRTEM). The results indicated that the product had a rod morphology, which consisted of three parts with different morphologies and crystallographic structures. The top of the rod was a polycrystalline nickel silicide (Ni31Si12) nanoball with average diameter of 100 nm; the middle part was a single-crystal Si short rod with average diameter of 80 nm; the bottom part was an amorphous silicon oxide nanowire with average diameter of 60 nm. A possible growth mechanism of the composite nanorod was briefly discussed

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 181-182)

Pages:

599-603

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. C. Srivastava and J. K. Tripathi: J. Phys. D: Appl. Phys. 2006, Vol. 39 (2006), p.1465.

Google Scholar

[2] W. A. Hines, A. H. Menotti, J. I. Budnick, T. J. Burch, T. Litrenta and V. Niculescu, K. Raj: Phys. Rev. B Vol. 13 (1976), p.4060.

Google Scholar

[3] J. Herfort, H. -P. Schönherr and B. Jenichen: J. Appl. Phys. Vol. 103 (2008), p. 07B506-1.

Google Scholar

[4] M. Uchida, Y. Onose, Y. Matsui and Y. Tokura, Science Vol. 311 (2006), p.359.

Google Scholar

[5] J. In, K. S. K. Varadwaj, K. Seo, S. Lee, Y. Jo, M. H. Jung, J. Kim and B. Kim: J. Phys. Chem. C, Vol. 112 (2008), p.4748.

Google Scholar

[6] A. L. Schmitt, J. M. Higgins and S. Jin: Nano Lett., Vol. 8 (2008), p.810.

Google Scholar

[7] Y. Song, A. L. Schmitt, and S. Jin: Nano Lett. Vol. 7 (2007), p.965.

Google Scholar

[8] F. Zhou, J. Szczech, M. T. Pettes, A. L. Moore, S. Jin and L. Shi: Nano Lett. Vol. 7 (2007), p.1649.

Google Scholar

[9] J. Szczech, A. L. Schmitt, M. J. Bierman and S. Jin: Chem. Mater. Vol. 19 (2007), p.3238.

Google Scholar

[10] K. Seo, K. S. K. Varadwaj, D. Cha, J. In, J. Kim, J. Park and B. Kim: J. Phys. Chem. C, Vol. 111 (2007), p.9072.

Google Scholar

[11] Y. -C. Lin, K. -C. Lu, W. -W. Wu, J. Bai, L. J. Chen, K. N. Tu and Y. Huang: Nano Lett. Vol. 8 (2008), p.913.

Google Scholar

[12] H. -K. Lin, Y. -F. Tzeng, C. -H. Wang, N. -H. Tai, I. -N. Lin, C. -Y. Lee and H. -T. Chiu: Chem. Mater. Vol. 20 (2008), p.2429.

Google Scholar

[13] Y. Wu, J. Xiang, C. Yang, W. Lu and C. M. Lieber: Nature Vol. 430 (2004), p.61.

Google Scholar

[14] L. F. Dong, J. Bush, V. Chirayos, R. Solanki and J. Jiao: Nano Lett. Vol. 5 (2005), p.2112.

Google Scholar

[15] X. Q. Yan, H. J. Yuan, J. X. Wang, D. F. Liu, Z. P. Zhou, Y. Gao, L. Song, L. F. Liu, W. Y. Zhou, G. Wang and S. S. Xie: Appl. Phys. A Vol. 79 (2004), p.1853.

Google Scholar

[16] J. Kim and W. A. Anderson: Nano Lett. Vol. 6 (2006), p.1356.

Google Scholar

[17] K. Rumpf, P. Granitzer and H. K. Renn: J. Phys.: Condens. Matter Vol. 20 (2008), p.454221.

Google Scholar

[18] J. Geng, H. Li, V. B. Golovko, D. S. Shephard, D. A. Jefferson, B. F. G. Johnson, S. Hofmann, B. Kleinsorge, J. Robertson and C. Ducati: J. Phys. Chem. B Vol. 108 (2004), p.18446.

DOI: 10.1021/jp047898p

Google Scholar

[19] J. F. Geng, C. Singh, D. S. Shephard, M. S. P. Shaffer, B. F. G. Johnson and A. H. Windle, Chem. Commun. Vol. 22 (2002), p.2666.

Google Scholar

[20] The Merck Index, 13th ed.; Merck Research Laboratories, Division of Merck and Co., Inc.: Whitehouse Station, NJ, 2001, p.1166.

DOI: 10.1002/jps.2600560741

Google Scholar

[21] B. Xia, I. W. Lenggoro and K. Okuyama: J. Am. Ceram. Soc. Vol. 84 (2001), p.1425.

Google Scholar

[22] X. Chen, J. He, C. Yan, and H. Tang: J. Phys. Chem. B Vol. 110 (2006), p.21684.

Google Scholar

[23] Z. W. Pan, Z. R. Dai, L. Xu, S. T. Lee, and Z. L. Wang: J. Phys. Chem. B Vol. 105 (2001), p.2507.

Google Scholar

[24] H. Okamoto, Desk Handbook: Phase Diagrams for Binary Alloys; ASM International: Materials Park, OH, (2000).

Google Scholar