Growth of Tl-2212 Films on CeO2-Buffered Sapphire Substrates

Article Preview

Abstract:

Tl2Ba2CaCu2O8 (Tl-2212) films were prepared on r-cut sapphire substrates buffered with CeO2 by dc magnetron sputtering and post-annealing method. The in situ two-temperature process was used to grow CeO2 buffer layers. XRD and AFM measurements showed that CeO2 films deposited at temperature of 370-470°C were excellent c-axis orientation and had smooth surface. SEM observations demonstrated that the Tl-2212 films’ surface morphology was changed from condensing crystal structure to plate-like structure when the CeO2 deposition temperature was increased. The best Tl-2212 film’s critical temperature Tc can reach to 108.3 K, and critical current density Jc obtained at 5.33 MA/cm2 (77 K, 0 T).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 197-198)

Pages:

466-470

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z.Z. Sheng, A.M. Herman, A.E. Ali, C. Almasan, J. Estrada, T. Datta and R. J. Matson: Phys Rev Lett., Vol. 60 (1988), p.937.

Google Scholar

[2] Z.Z. Sheng and A.M. Herman: Nature, Vol. 332 (1988), p.55.

Google Scholar

[3] S.L. Yan, L. Fang, Q.X. Song, J. Yan, Y.P. Zhu, J.H. Chen and S.B. Zhang: Appl. Phys. Lett., Vol. 63 (1993), p.1845.

Google Scholar

[4] S.L. Li, Y.F. Chen, X.P. Xu, R.L. Wang, H.Y. Tian, D.H. Lin and D.N. Zheng: Physica C Vol. 460–462 (2007), p.1369.

Google Scholar

[5] Henrik Schneidewind and Tomas Stelzner: IEEE Trans. Appl. Supercond, Vol. 13 (2003), p.2762.

Google Scholar

[6] H. Nguyen Xuan, S. Beauquis, Ph. Gales, P. Chadouet, C. Jimenez, F. Weiss, M. Decroux, M. Therasse, V. Strbík, M. Polák, and S. Chromik: Journal of Physics: Conference Series Vol. 43 (2006), p.281.

DOI: 10.1088/1742-6596/43/1/070

Google Scholar

[7] S.L. Yan, L. Fang, M.S. Si, H.L. Cao, Q.X. Song, J. Yan, X.D. Zhou and J.M. Hao: Supercond. Sci. Technol, Vol. 7 (1994), p.681.

Google Scholar

[8] W.L. Holstein, L.A. Parisi, C. Wilker and R.B. Flippen: Appl. Phys. Lett. Vol. 60 (1992), p. (2014).

Google Scholar

[9] J. Mazierska and C. Wilker: IEEE Trans. Appl. Superconduct., Vol. 11 (2001), p.4140.

Google Scholar

[10] Q.L. Xie, S.L. Yan, X.J. Zhao, F. Lan, L. Ji, Y.T. Zhang, S.T. You, J.L. Li, X. Zhang, T.G. Zhou, T. Zuo and H.W. Yue: Acta Phys. Sin. Vol. 57 (2008), p.519 (in Chinese).

Google Scholar

[11] Q.L. Xie, Z. Wang, G.H. Huang, X.H. Wang, F. You, L. Ji, X.J. Zhao, L. Fang and S. L. Yan: Acta Phys. Sin. Vol. 58 (2009), p.7958 (in Chinese).

Google Scholar

[12] Q. L. Xie, F. You, G. H. Huang, J. Y. Li, T. Zuo, M. He, L. Ji, Y. T. Zhang, X. J. Zhao, L. Fang and S.L. Yan: Journal of Synthetic Crystals, 2009, Vol. 38 (2009), p.1146( in Chinese).

Google Scholar

[13] J.C. Nie, H. Yamasaki, H. Yamada, Y. Nakagawa and K. Develos-Bagarinao: Supercond. Sci. Technol., Vol. 16 (2003), p.768.

Google Scholar

[14] Q.L. Xie, S.L. Yan, G.H. Huang, Y.T. Zhang, X.J. Zhao and L. Fang: Journal of Synthetic Crystals, Vol. 39 (2010), p.291 ( in Chinese).

Google Scholar