First-Principles Calculations on Structural, Electronic, and Optical Properties of 2H-CuAlO2

Abstract:

Article Preview

Structural, electronic and optical properties of 2H-CuAlO2 were computed, using the plane-wave ultrasoft pseudopotential technique based on the first-principles density functional theory (DFT). The equilibrium lattice parameters, band structure, densities of states (DOS) and charge densities of 2H-CuAlO2 have been obtained. The equilibrium lattice parameters, band structure and DOS are found to be in good agreement with the available experimental and calculational values. The charge densities and the chemical bonding of 2H-CuAlO2 are analyzed, which show that bonding between Cu and O is mainly covalent due to Cu 3d and O 2p hybridization and that bonding between Al and O is mainly ionic. The complex dielectric function, refractive index and absorption coefficient of 2H-CuAlO2 have been predicted. The calculated static dielectric constant and static refractive index of 2H-CuAlO2 is 7.1 and 2.66, respectively.

Info:

Periodical:

Advanced Materials Research (Volumes 197-198)

Edited by:

Huaiying Zhou, Tianlong Gu, Daoguo Yang, Zhengyi Jiang, Jianmin Zeng

Pages:

487-490

DOI:

10.4028/www.scientific.net/AMR.197-198.487

Citation:

L. P. Feng et al., "First-Principles Calculations on Structural, Electronic, and Optical Properties of 2H-CuAlO2", Advanced Materials Research, Vols. 197-198, pp. 487-490, 2011

Online since:

February 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.