Local Effects of Welding Seams with Laser-Based Joining Concepts for High-Strength Load-Transferring Structure Modules

Abstract:

Article Preview

In subproject B1, local physical and geometrical effects which have only been observed so far as side effects in the laser joining process, are to be used purposefully, in order to achieve graded strength properties and to improve the component rigidity significantly. One aim of the work in the first requested period is the investigation of effects of laser-based joining connections on the structure rigidity for simplified sample geometries. A defined local strength increase will first be done on blind seams and later on seams with suitable seam geometries. In the context of SFB 675, laser joining processes are to be developed further so that the final assembly can take place with and other methods to increase strength for semi-finished products without considerably changing the local material characteristics. Beyond that, general rigidity effects of the connections are to be used purposefully for rigidity improvement.

Info:

Periodical:

Edited by:

Heinz Palkowski and Kai-Michael Rudolph

Pages:

49-55

Citation:

M. Schimek et al., "Local Effects of Welding Seams with Laser-Based Joining Concepts for High-Strength Load-Transferring Structure Modules ", Advanced Materials Research, Vol. 22, pp. 49-55, 2007

Online since:

August 2007

Export:

Price:

$38.00

[1] Dausinger, F.: Ein neues Strahlwerkzeug zum Schweißen, der Scheibenlaser Anwendungsfelder und Entwicklungspotenzial; Proceedings 4. Workshop Industrielle Anwendung von Hochleistungs-Diodenlasern, 6. -7. Mai, Dresden, (2003).

[2] Rath, W.: Remote Laser Welding System Using Slab Laser Technology: Process Data and Technical Applications; Proceeding of the 10 th Annual Automotive Laser Applications Workshop, March 12-13, 2002, MI, USA, pp.119-127.

[3] Becker, W.; Beck, M.; Bernhardt, R.; Potential of robot-guided remote laser welding; Proceedings of Laser Assisted Net Shape Engineering LANE 4, Erlangen, 2004, pp.201-210.

[4] Sysweld 2002. 1, Reference Manual, ESI Group, Aachen, (2002).

[5] Wohlfahrt, H.: Simulation der Vorgänge im Schmelzbad beim Laserstrahlschweißen von Nahtausbildung, Gefüge, Verzug und Schweißeigenspannungen, Bericht AiF 11. 853 A/B, Braunschweig, (2000).

[6] Bormann, A.: Serielle, induktive Wärmebehandlung laserstrahlgeschweißter Feinbleche, Dissertation, Universität Hannover, (2004).

[7] Haferkamp, H.; Bunte, J.; Herzog, D.; Ostendorf, A.: Laser based welding of cellular aluminium. In: Science and Technology of Welding and Joining 9 (2004) 1, pp.65-71.

DOI: https://doi.org/10.1179/136217104225017170

[8] Meier, O.: Laserstrahlschweißen hochfester Stahlfeinbleche mit prozessintegrierter induktiver Wärmebehandlung. Dissertation, Berichte aus dem LZH, Band 4/2005, PZHVerlag, Hannover, (2005).

[9] Haferkamp, H., et al.: Verbindungsschweißen hochfester Stahlwerkstoffe. Forschung für die Praxis P526. Düsseldorf: Verlag und Vertriebsgesellschaft mbH, (2004).

[10] Haferkamp, H.; Bunte, J.; Cordini, P.; Borman, A.; Block, B.: Laser welding of steel rail coaches. In: 3rd International Institute of Welding Congress. 1. -3. Dezember, Tehran, Iran. 2003. pp.70-78.

[11] Haferkamp, H.; Ostendorf, A.; Bunte, J.; Cordini, P.; Bormann, A.; Block, B.: Laser welding of steel rail coaches. In: Proceedings of the Int. Conference on Manufacturing Engineering; Halkidiki, Greece; 3. -4. October 2002. pp.711-719.

[12] Haferkamp, H.; Bunte, J.; Cordini, P.; Bormann, A.; Block, B.; Cordes, P.; Schranz, G.: Lasergeschweißtes Schienenfahrzeug - Leichtbaustrukturen aus Stahl. In: Schweißen und Schneiden 2002, Große Schweißtechnische Tagung; Kassel; 25. -27. September. 2002. pp.239-244.

[13] Block, B.; Haferkamp, H.; Bach, F. W.; Hassel, T.; Huang, J.; Ostendorf, A.; Meier, O.; Bruns, C.: Einfluss von Carbidpulvern als Impfmittel und einer mechanisch-thermischen Nahtnachbehandlung auf Gefüge und mechanische Eigenschaften von Schweißnähten an Titan. In: Schweißen & Schneiden 57 (2005).