Local Strain Hardening of Sheet and Solid Forming Components during Formation of Martensite in Metastable Austenitic Steels

Article Preview

Abstract:

The industrial application of stainless steels is of high importance because of their high corrosion resistance and forming behaviour. The evolution of martensite during the deep drawing processes leads to an increasing strain hardening of the material. In the collaborative research centre 675 “Erzeugung hochfester metallischer Strukturen und Verbindungen durch gezieltes Einstellen lokaler Eigenschaften” (Creation of high strength metallic structures and joints by setting up scaled local material properties), metal forming processes is being researched. Emphasis on this part of the project is the stress-induced formation of martensite in sheet metal and bulk metal components in metastable austenitic steel. The aim of the investigations is to develop partial structure fields of martensite in sheet metal components in order to construct a lightweight structure. Therefore, components are divided into stretched and non-stretched parts. This leads to a defined buckling of components, for example in case of a crash. Furthermore, the effect of the transformation induced formation of martensite in metastable austenitic steel should be utilised on bulk metal forming components. Thereby special load adapted components with locally optimized properties are producible, like austenitic ductile regions and martensitic high-strength areas.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

5-15

Citation:

Online since:

August 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Schwarz, D.; Dissertation RWTH Aachen (2003).

Google Scholar

[2] Schriever, T.; Hermann, F.; Maiwald, J.; FAT (1994).

Google Scholar

[3] Schmidt, W.; Küppers, W.; Thyssen Edelstahl, Technische Berichte 12 (1986) Vol. 1, pp.80-100.

Google Scholar

[4] Barenbrock, D.; Dissertation, Universität Hannover, VDI-Reihe 5: Grund- und Werkstoffe, (2002).

Google Scholar

[5] Hsu, K. - L.; Ahn, T. M.; Rigney, D. A.; Proceedings of the International Conference on Wear of Materials (EPRI EL), Dearborn, 16. -18. April 1979, pp.12-26.

Google Scholar

[6] Lindenberg, H. -U.; Kazmierski O.; Otto A.; Stahl und Eisen, Vol. 5 (2000), pp.37-42.

Google Scholar

[7] Goodchild, L.; Roberts, W. T.; Wilson D. V.; Acta Metall. Vol. 18 (1970), p.1137.

Google Scholar

[8] Mangonon, P.; Thomas G.; Metall Trans. Vol. 1, 1970, pp.577-586.

Google Scholar

[9] Volosevich, P.; Gridnev, N.; Petrov, Y.N.; Phys. Met. Metall. 34 (1972), pp.108-113.

Google Scholar

[10] Schmitz, K. W.; Dissertation, Technische Universität Clausthal (1974).

Google Scholar

[11] Sjöberg, I.J.: The influence of analysis on the properties of stainless spring steel. Wire (1973), pp.155-158.

Google Scholar

[12] Becker, H.; Brandis, H.; Küppers, W.; Thyssen Edelstahl, Technische Berichte 12 Vol. 1 (1986), pp.35-54.

Google Scholar

[13] Frehn, A.; Dissertation, Berichte aus dem Institut für Eisenhüttenkunde Vol. 7 (2004), RWTH Aachen, Shaker Verlag.

Google Scholar

[14] Angel, T.; Journal of the Iron and Steel Institute (1954), pp.165-174.

Google Scholar

[15] Ludwigson, D. C.; Berger, J.A.; Journal of The Iron and Steel Institute (1969) pp.63-69.

Google Scholar

[16] Engel, U.; Abschlussbereicht zum Forschungsvorhaben EN 196/3 (2003).

Google Scholar

[17] Groth, H.; Dissertation, Eidgenössische Technische Hochschule Zürich (1992).

Google Scholar

[18] Hänsel, A. H. C.; Berg, H. J.; Hora, P.; Reissner, J.; Numisheet 1996, Part I, pp.367-371.

Google Scholar

[19] Shingawa, K.; Mori, K. -I.; Osakada, K.; Journal of Materials Processing Technology, Vol. 27 (1991), pp.301-310.

Google Scholar

[20] Hänsel, A.; VDI-Verlag, Vol. 2, No. 491, Düsseldorf (1998).

Google Scholar

[21] Thibaud, S.; Boudeau, N.; Gelin, J. -G.; Numiform 2004, Proceedings of the 8th International Conference on Numerical Methods in Industrial Forming Processes, The Ohio State University in Columbus, Ohio, 13. -17. 06. 2004, pp.1777-1782.

Google Scholar

[22] Voncken, R.; van der Sluis, O.; Post, J.; Huetnik, J.; Numiform 2004, Proceedings of the 8th International Conference on Numerical Methods in Industrial Forming Processes, The Ohio State University in Columbus, Ohio, 13. -17. 06. 2004, pp.469-474.

Google Scholar

[23] Doege, E.; Mütze, S.; FAT Schriften Reihe Vol. 171 ( 2002).

Google Scholar

[24] Doege, E.; Frank, C.; Schulz-Marner, H.; Hallfeldt, T.; Bänder Bleche Rohre Vol. 11 (1997), pp.26-28.

Google Scholar

[25] Seidel, H. -J.; Abschlussbericht zum Forschungsvorhaben Do 190/138-4, (2004).

Google Scholar

[26] Ropers, C.; Dissertation, Universität Hannover, (2001).

Google Scholar

[27] Doege, E.; Ropers, C.; Forschung im Ingenieurwesen Vol. 65 (1999), pp.169-177.

Google Scholar

[28] Doege, E.; Behrens, B. -A.; Springub, B.; UTF Science Vol. 2 (2003).

Google Scholar

[29] Doege, E.; Behrens, B. -A.; Abschlussbericht zum Forschungsvorhaben Do 190/138-4 (2004).

Google Scholar

[30] Behrens, B. -A.; Doege, E.; Springub, B.; UTF Science II (2003), pp.1-4.

Google Scholar

[31] Behrens, B. -A.; Doege, E.; Springub, B.; steel research Vol. 7 (2004), pp.475-482.

Google Scholar

[32] Behrens, B. -A.; Doege, E.; Springub, B.; Abschlussbereicht zum Forschungsvorhaben Do 190/136-1 der DFG.

Google Scholar