Structure and Thermal Properties of Cellulose Diacetate-Graft-Poly(lactic Acid) Copolymer

Article Preview

Abstract:

To improve the thermal behavior of cellulose diacetate, cellulose diacetate-graft-poly(lactic acid) copolymers (CDA-g-PLAs) were synthesized by ring-opening polymerization of L-lactide using stannous octoate (Sn(Oct)2) as catalyst. The molecular structure of the copolymer was characterized by FT-IR and 1H-NMR and the thermal properties were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TG-DTA). The results showed that the product was grafted copolymer of cellulose diacetate-graft-poly(lactic acid) with different side-chain structure. The thermal processing properties of CDA-g-PLAs are remarkably improved with melting temperature(Tm) about 140°C which lower than that of CDA and decomposition temperature (Td) higher than 260°C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

85-89

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Buchanan CM, Gardner RM, Komarek RJ. J Appl. Polym. Sci., Vol. 47(1993), p.1710.

Google Scholar

[2] Seung-hwan Lee Nobuo Shiraishi. Journal of Applied Polymer Science, Vol. 81(2001), p.243.

Google Scholar

[3] Yoshiyuki Nishio. Cellulose, Vol. 4(1997), p.131.

Google Scholar

[4] Yoshikuni Teramoto, Yoshiyuki Nishio. Polymer, Vol. 44(2003), p.2701.

Google Scholar

[5] Ayaka Mayumi Takuya Kitaoka Hiroyuki Waifish. Journal of Applied Polymer Science, Vol. 102(2006), p.4358.

Google Scholar

[6] Ama Shoko, Osaki Misa. CN1462324A, 2003. 12. 17.

Google Scholar

[7] X.M. Deng, C.D. xiong, L.M. Cheng, H.H. Huang. J. Appl. Polym. Sci., Vol. 55(1995), p.1193.

Google Scholar

[8] Z. Zhu, C. Xiong, L. Zhang, X. Deng. J. Polym. Sci., Vol. 35(1997), p.709.

Google Scholar

[9] Xiaofeng Sui, Jinying Yuan, Mi Zhou. Biomacromolecules, Vol. 9(2008), p.2615.

Google Scholar

[10] T. Heinze, K. Schwikal, S. Barthel, Macromol. Biosci, Vol. 5(2005), p.520.

Google Scholar

[11] J. Wu, J. Zhang, H. Zhang. Biomacromolecules, Vol. 5(2004), p.266.

Google Scholar

[12] Welton, T. Chem. Rev. Chem. Rev., Vol. 8(1999), p (2071).

Google Scholar

[13] Frank hermanutz, Frank meister. Chemical fibers international, Vol. 6(2006), p.342.

Google Scholar

[14] Yoshikuni Teramoto. Macromolecular Chemistry and Physics, Vol. 205(2004), p. (1904).

Google Scholar

[15] Chenghu Yan Jinming Zhang Yuxia Lv. Biomacromolecules, Vol. 10(2009), p. (2013).

Google Scholar

[16] Hans R. Kricheldorf, I. Kreiser-Saunders. Polymer, Vol. 6(1995), p.1253.

Google Scholar

[17] Yu Xiao-lin, Su Zhi-feng, Wang Xiao-jun. Applied Chemical Industry, Vol. 3(2008), p.260.

Google Scholar

[18] Mo CM, Zhang L, Yuan Z. Nanostructured Materials, Vol. 5(1995), p.95.

Google Scholar

[19] Ballistreri A., Montaudo G., Scamporrino, E. J. Polym. Sci., Vol. 18(1980), p.1147.

Google Scholar

[20] Xu Yu-zhi, Chu Fu-xiang. Chinese Academy of Forestry, 2009. 5.

Google Scholar