Synthesis of MoO3 Nanorods by a Solution Method

Article Preview

Abstract:

MoO3 nanorods were synthesized by a solution method with stirring and ultrasound. The formation temperature of MoO3 nanorods were studied by XRD. The particle-size and morphology were characterized by TEM. The diameter of nanorods was ca. 60nm.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 236-238)

Pages:

2131-2134

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.N. Xia, P.D. Yang, Y.G. Sun, Y.Y. Wu, B. Mayers, and B. Gates, One-Dimensional nanostructures: synthesis, characterization and applications, Adv. Mater. 15 (2003) 353.

DOI: 10.1002/adma.200390087

Google Scholar

[2] R. Tenne, Fullerene-like materials and nanotubes from inorganic compounds with a layered (2-D) structure, Colloids and Surfaces A 208 (2002) 83.

DOI: 10.1016/s0927-7757(02)00104-8

Google Scholar

[3] C.M. Zelenski, and P.K. Korhout, Template synthesis of near-monodisperse microscale nanofibers and nanotubules of MoS2, J. Am. Chem. Soc. 120 (1998) 734.

DOI: 10.1021/ja972170q

Google Scholar

[4] J.G. Liu, Z.J. Zhang, C.Y. Pan, Y. Zhao, X. Su, Y. Zhou, and D.P. Yu, Enhanced field emission properties of MoO2 nanorods with controllable shape and orientation, Mater. Lett. 58(2004) 3812.

DOI: 10.1016/j.matlet.2004.07.034

Google Scholar

[5] S.T. King, Oxidative coupling of methylbenzenes by metal oxides, J. Catal. 131 (1991) 215.

Google Scholar

[6] J.N. Yao, K. Hashimoto, A. Fujishima, Photochromism induced in an electrolytically pretreated Mo03 thin film by visible light, Nature 355 (1992) 624.

DOI: 10.1038/355624a0

Google Scholar

[7] J. Svachula, J. Tichy, J.J. Machek, Oxidation of propanal on molybdenum-vanadium oxide catalyst, Catal. Lett. 3 (1989) 257.

DOI: 10.1007/bf00766401

Google Scholar

[8] J.O. Besenhard, J. Heydecke, E. Wudy, H.P. Fritz and W. Foag, Characteristics of molybdenum oxide and chromium oxide cathodes in primary and secondary organic electrolyte lithium batteries. Part II. Transport properties, Solid State Ionics 8 (1983) 61.

DOI: 10.1016/0167-2738(83)90041-3

Google Scholar

[9] G.A. Nazri, C. Julien, Far-infrared and Raman studies of orthorhombic MoO3 single crystal Solid State IONICS 53-56 (1992) 376.

DOI: 10.1016/0167-2738(92)90403-c

Google Scholar

[10] M.B. Rahmani, S.H. Keshmiri, J. Yu, A.Z. Sadek, L. Al-Mashat, A. Moafi, et al. Gas sensing properties of thermally evaporated lamellar MoO3, Sensors and Actuators B 145 (2010) 13-19.

DOI: 10.1016/j.snb.2009.11.007

Google Scholar

[11] G.R. Patzke, A. Michailovski, F. Krumeich, R. Nesper, J.D. Grunwaldt, and A. Baiker, One-Step Synthesis of Submicrometer Fibers of MoO3, Chem. Mater. 16 (2004) 1126.

DOI: 10.1021/cm031057y

Google Scholar

[12] X.L. Li, J.F. Liu, and Y.D. Li, Low-temperature synthesis of large-scale single-crystal molybdenum trioxide MoO3 nanobelts, Appl. Phys. Lett. 81 (2002) 4832.

DOI: 10.1063/1.1529307

Google Scholar

[13] Y.B. Li, Y. Bando, D. Golberg, and K. Kurashima, Field emission from MoO3 nanobelts, Appl. Phys. Lett. 81 (2002) 5048.

DOI: 10.1063/1.1532104

Google Scholar

[14] J. Zhou, N.S. Xu, S.Z. Deng, J. Chen, J.C. She, and Z.L. Wang, Large-area nanowire arrays of molybdenum and molybdenum oxides: synthesis and field emission properties, Adv. Mater. 15 (2003) 1835.

DOI: 10.1002/adma.200305528

Google Scholar