Thermodynamic Properties of AlNi Intermetallics under High Pressure

Article Preview

Abstract:

The thermodynamic properties of AlNi are investigated by the full-potential linearized muffin-tin orbital (FP-LMTO) scheme within the generalized gradient approximation correction (GGA) in the frame of density functional theory. The calculated lattice parameter and bulk modulus are in excellent agreement with the experimental and other calculated results. Through the quasi-harmonic Debye model, in which the phononic effects are considered, the dependences of relative volume V/V0 on pressure P, cell volume V on temperature T, linear thermal expansion α and specific heat CV on temperature and pressure are successfully obtained.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 268-270)

Pages:

275-279

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Jogdand,G. Gulsoy,T. Ando,J. Chen C.C. Doumanidis,Z. Gu,C. Rebholz,P. Wong, NSTI-Nanotech, vol. 1, 2008, ISBN978-1-4200-8503-7, /www. nsti. orgS.

Google Scholar

[2] C.T. Liu, Mater. Chem. and Phys. Vol. 42 (1995), 77–86.

Google Scholar

[3] B. Wen, J. Zhao, F. Bai, T. Li, Intermetallics Vol. 16 (2008), 333–339.

Google Scholar

[4] K. Rzyman, Z. Moser, R.E. Watson, M. Weinert, J. of Phase Equil. Vol. 17 (1996), 173.

Google Scholar

[5] K. Rzyman, Z. Moser, Pro. Mater. Sci. Vol. 49 (2004), 581.

Google Scholar

[6] R.X. Hu, P. Nash, J. Mater. Sci. Vol. 40 (2005), 1067.

Google Scholar

[7] R. Arroyave, D. Shin, Z.K. Liu, Acta Mater. Vol. 53 (2005), 1809.

Google Scholar

[8] K. Rzyman, Z. Moser, R.E. Watson, M. Weinert, J. Phase Equil. Vol. 19 (1998), 106.

Google Scholar

[9] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. Vol. 77 (1996), 3865.

Google Scholar

[10] O. K. Andersen, Phys. Rev. B Vol. 12 (1975), 3060.

Google Scholar

[11] F. Birch, Phys. Rev. Vol. 71(1947), 809.

Google Scholar

[12] Blanco M A, Francisco E and Luana V, Comput. Phys. Commun. Vol. 158 (2004), 7.

Google Scholar

[13] Blanco M A, Martín Pendás A, Francisco E, Recio J M and Franco R, J. Molec. Struct. (Theochem. ), Vol. 368 (1996), 245.

Google Scholar

[14] Flórez M, Recio J M, Francisco E, Blanco M A and Pendás A M. Phys. Rev. B Vol. 66 (2002), 144112.

Google Scholar

[15] Poiier J P, Introduction to the Physics of the Earth's Interior (England: Cambridge University Press, 1991).

Google Scholar

[16] Francisco E, Recio J M, Blanco M A and Martín Pendás A, J. Phys. Chem. Vol. 102 (1998), 1595.

Google Scholar

[17] Francisco E, Blanco M A and Sanjurjo G, Phys. Rev. B Vol. 63 (2001), 094107.

Google Scholar

[18] J. E. Garc Es, G.B., Phys. Rev. B Vol. 71 (2005), 134201.

Google Scholar

[19] P. Villas, L.C., Pearsons Handbook of Crystall ographic Data for Intermetallic Phases, seconded, ASMInternational, MaterialsPark, OH, (1991).

Google Scholar

[20] N. Rusovic, H.W., Phys. Status Solidi A Vol. 44(1977), 609.

Google Scholar

[21] X. Y. Huang, I.I.N.K., Phys. Rev. B Vol. 70 (2004), 064301.

Google Scholar