Comparative Study of the Properties between Transparent Conducting ZnO:Zr and ZnO:Al Films Deposited by DC Magnetron Sputtering

Article Preview

Abstract:

Transparent conducting zirconium-doped zinc oxide (ZnO:Zr) and aluminium-doped zinc oxide (ZnO:Al) thin films were deposited on glass substrates by direct current (DC) magnetron sputtering at room temperature. The crystallinity of ZnO:Zr and ZnO:Al thin films increases as the target-to-substrate distance decreases, and the crystallinity of ZnO:Zr films is found to be always better than that of ZnO:Al films prepared under the same deposition conditions. As the target-to-substrate distance decreases, the resistivity of both film types decreases greatly while the optical transmittance does not change much with the variation of the distance. When target-to-substrate distance is 4.1 cm, the lowest resistivity of 6.0×10-4 Ω·cm and 5.7×10-4 Ω·cm was obtained for ZnO:Zr and ZnO:Al films, respectively. The figure of merit arrived at a maximum value of 3.98×10-2 Ω for ZnO:Zr films lower than 5×10-2 Ω for ZnO:Al films.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 284-286)

Pages:

2182-2186

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.Y. Oh, M.C. Jeong, T.H. Moon, W. Lee, J.M. Myoung, J.Y. Hwang, et al., J. Appl.Phys. 99 (2006),p.124505

Google Scholar

[2] S. Fay, U. Kroll, C. Bucher, E. Vallat-Sauvain, A. Shah, Sol. Energy Mater. Sol. Cells 86 (2005),p.385

Google Scholar

[3] H. Kim, C.M. Gilmore, J.S. Horwitz, A. Pique, H. Murata, G.P. Kushto, et al, Appl. Phys. Lett. 76 (2000), p.259

Google Scholar

[4] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, Science 300 (2003) , p.1269

Google Scholar

[5] M. Tadatsugu, Thin Solid Films 516 (2008) , p.5822

Google Scholar

[6] H. Kim, J.S. Horwitz, W.H. Kim, A.J. Makinen, Z.H. Kafafi, D.B. Chrisey, Thin Solid Films 420 –421 (2002) , p.539

DOI: 10.1016/s0040-6090(02)00836-2

Google Scholar

[7] J. Hu, R.G. Gordon, J. Appl. Phys. 71 (1992) , p.880.

Google Scholar

[8] M.S. Lv, X.W. Xiu, Z.Y. Pang, Y. Dai, L.N. Ye, C.F. Cheng, et al., Thin Solid Films 516 (2008) , p. (2017)

Google Scholar

[9] H. F. Liu, H. F. Zhang, C. X. Lei, C. K. Yuan, Journal of Semiconductors 30 (2009) , p.0230011

Google Scholar

[10] H. F. Zhang,H. F. Liu, L. Feng, Vacuum 84(2010) , p.833

Google Scholar

[11] H. F. Zhang, C. X. Lei, H. F. Liu, C. K. Yuan, Appl. Surf. Sci. 255 (2009) , p.6054

Google Scholar

[12] G.K. Paul, S.B. Bandyopadhyay, S.K. Sen, S. Sen, Mater. Chem. Phys. 79 (2003) , p.71

Google Scholar

[13] D. H. Zhang, T. L. Yang, J. Ma, Q. P. Wang, R. W. Gao, H. L. Ma, Appl. Surf. Sci. 158(200) , p.43

Google Scholar

[14] M.S. Lv, X.W. Xiu, Z.Y. Pang, Y. Dai, S.H .Han, Appl. Surf. Sci. 252 (2005) , p. (2006)

Google Scholar

[15] X.T. Hao, J.Ma, D.H. Zhang, T.L. Yang, H.L. Ma, et al., Appl. Surf. Sci. 183 (2001) , p.137

Google Scholar

[16] G. Haacke, J. Appl. Phys. 47 (1976) , p.4086

Google Scholar

[17] T.L. Yang, Z.S. Zhang, S. Song, Y.H. Li, M.S. Lv, Z.C. Wu, et al., Vacuum 83(2008) , p.257

Google Scholar

[18] M. Ait Aouaj, M. Abd-Lefdil, F. Cherkaoui El Moursli, F. Hajji, Eur. Phys. J. Appl. Phys. 40 (2007) , p.55

DOI: 10.1051/epjap:2007131

Google Scholar