Study of Thermal-Anneal-Induced Rearrangement of N-Bonding Configurations in GaInNAs/GaAs Quantum Well

Article Preview

Abstract:

Blueshifts of photoluminescence (PL) peak wavelength from GaInNAs/GaAs quantum well (QW) at various annealing temperatures have been studied. Our results indicate that as-grown GaInNAs/GaAs QW sample has N-Ga3In1 phase, which changes to a mixture of N-Ga3In1 and NGa2In2 after annealing. The activation energy characterized for short range order is 2.38 eV, which is smaller than that for the diffusion process (3.196 eV). This indicates that the short range order is the dominant mechanism for PL blueshift at relatively low annealing temperature and for short time annealing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

209-211

Citation:

Online since:

November 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. R. Chalker, T. J. Bullough, M. Gass, S. Thomas, and T. B. Joyce: J. Phys.: Condens. Matter 16, S3161 (2004).

DOI: 10.1088/0953-8984/16/31/012

Google Scholar

[2] E. tournie, M. -A. Pinault, and A. Guzman: Appl. Phys. Lett. 80, 4148 (2002).

Google Scholar

[3] Z. Pan, L. H. Li, W. Zhang, Y. W. Lin, R. H. Wu, and W. Ge: Appl. Phys. Lett. 77, 1280 (2000).

Google Scholar

[4] P.J. Klar, H. Gruning, S. Schafer, K. Volz, W. Stolz, and W. Heimbrodt: Physical Review B, Vol 64, 121203 (R) (2001).

Google Scholar

[5] J. -M. Chauveau, A. Trampert, and K. H. Ploog: Appl. Phys. Lett. 84, 2503 (2004).

Google Scholar

[6] H. F. Liu, V. Dixit, and N. Xiang: J. Appl. Phys. 99, 013503 (2006).

Google Scholar

[7] J. -Y. Duboz, J.A. Gupta, Z. R. Wasilewski, J. Ramsey, R. L. Williams, G. C. Aers, B. J. Riel, and G. I. Sproule: Phys. rev. B 66, 085313 (2002).

Google Scholar

[8] K. J. Moore, G. Duggan, P. Dawson, and C.T. Foxon: Phys. Rev B 38, 5535 (1988).

Google Scholar

[9] M. Hugues, B. Damilano, J. -M. Chauveau, J. -Y. Duboz, and J. Massies: Phys. rev B 75, 045313 (2007).

Google Scholar

[10] T. matsuoka, T. Sasaki, and A. Katsui: Optoelectron. devices Technol. 5, 53 (1990).

Google Scholar

[11] M. Pessa, C. S. Peng, T. Jouhti, E. -M. Pavelescu, W. Li, S. Karirinne, H. F. Liu, and O. Okhotnikov: IEE Proc.: Optoelectron. 150, 12 (2003).

DOI: 10.1049/ip-opt:20030185

Google Scholar

[12] Sarah Kurtz, J. Webb, L. Gedvilas, D. Friedman, J. Geisz, J. Olson, R. King, D. Joslin, and N. Karam: Appl. Phys. Lett. 87, 748 (2001).

DOI: 10.1063/1.1345819

Google Scholar

[13] O. M. Khreis, and I. S. Al-Kofahi: Semiconductor Science and Tech. 20, 320 (2005).

Google Scholar

[14] R. Kudrawiecz, G. Sek, J. Misiewicz, L. H. Li, and J. C. Harmand: Solid State Commun. 129, 353 (2004).

Google Scholar