Experiment and Analysis of Dielectric EAP Electrical Model

Article Preview

Abstract:

Energy harvesting using Dielectric Electroactive Polymer (DEAP) is an interesting possibility to convert mechnical energy to electrical energy. The fundamental of generator mode of DEAP is first described, and then an equivalent RC electrical model for the DEAP generator is given. Based on the RC model, we analyze the relationship between the electrical model parameters and the influencing factors, and then get their theoretical formulas. In the experiment, the annular type DEAP generator unit is used. Using the discharging method, the experimental data about the electrical parameters influenced by the applied voltage and the axial displacement are obtained respectively. We modify the theoretical formulas based on the experimental data. The modified formuals can serve as a significant guide for energy conversion and generator design using dielectric elastomer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

388-393

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Wax. and R. Sands. Electroactive polymer actuaotors and devices[C]. Smart Structures and Materials: Electroactive Polymer Actuators and Devices(EAPAD) , ed.Y. Bar-Cohen, Proc. SPIE 3669, pp: 2-10, (1999).

DOI: 10.1117/12.349666

Google Scholar

[2] Harsha Prahlad, Roy Kornbluh, et al. Polymer Power: Dielectric Elastomers and Their Applications in Distributed Actuation and Power Generation[C]. Proceedings of ISSS 2005 International Conference on Smart Materials Structures and Systems, Bangalore, India, 2005, SA13.

Google Scholar

[3] R. Kornbluh,R. Pelrine,Q. Pei,M. Rosenthal,S. Stanford,N. Bonwit,R. Heydt,H. Prahlad, andS. ShastriApplicaton of Dielectric Elastomer EAP Actuators[C]. Chapter 16 in Electroactive polymer(EAP)Actuators as Artificial Muscles: Reality, Potential and Challenges, Y. Bar-Cohen, ed. 2nd edition, SPIE Press, Bellingham, Washington, pp: 529-589, (2004).

DOI: 10.1117/3.547465.ch16

Google Scholar

[4] P. Sommer-larsen, J. Hooker, G. Kofod, K. West, M. Benslimane, P. Gravesen, Response of dielectric elastomer actuators, Proc. Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices(EAPAD), pp.157-163, (2001).

DOI: 10.1117/12.432641

Google Scholar

[5] N. C. Goulbourne, E. M. Mockensturm and M. I. Frecker, Electro-elastomers: Large deformation analysis of silicone membranes, International Journal of Solids and Structures, Vol. 44, Issue 9, pp.2609-2626, (2007).

DOI: 10.1016/j.ijsolstr.2006.08.015

Google Scholar

[6] Kwangmok Jung , Kwang J. Kim, Hyouk Ryeol Choi. A self-sensing dielectric elastomer actuator[J]. Sensors and Actuators, 143 (2008) 343–351.

DOI: 10.1016/j.sna.2007.10.076

Google Scholar

[7] C. Jean-Mistral, S. Basrour, J.J. Chailloutand A. Bonvilain. A Complete Study of Electroactive Polymers for Energy Scavenging: Modeling and Experiments[C]. EDA Publishing/DTIP (2007).

Google Scholar

[8] C. Graf, J. Maas, and D. Schapeler, Energy harvesting cycles based on electro active polymers, Proceedings of SPIE, vol. 7642, (2010).

DOI: 10.1117/12.853597

Google Scholar

[9] Curtis M. Ihlefeld and Zhihua Qu. A Dielectric Electroactive Polymer Generator-Actuator Model: Modeling, Identification, and Dynamic Simulation[C]. Proc. of SPIE Vol. 6927 69270R-1.

DOI: 10.1117/12.775544

Google Scholar

[10] LA. Toth, Goldenberg. AndrewA, Control System Design for a Dielectric Elastomer Actuator: the Sensory Subsystem[C]. Smart Structures and Materials 2002: Electroactive Polymer Actuator and Devices (EAPAD), ed.Y. Bar-Cohen, Proc. SPIE 4695, pp: 323-334, (2002).

DOI: 10.1117/12.475179

Google Scholar

[11] S. SOULIMANE, et al. Modeling of Smart Compliant Electro-Active Polymer Actuator[C]. 9th. Int. Conf. on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSimE (2008).

DOI: 10.1109/esime.2008.4525041

Google Scholar

[12] Jugen Maas, Christian Graf and Lars Eitzena. Control Concepts for Dielectric Elastomer Actuator[C]. Smart Structures and Materials 2011: Electroactive Polymer Actuator and Devices (EAPAD), ed.Y. Bar-Cohen, Proc. SPIE 7976, pp: 1H-1-1H-12, (2011).

DOI: 10.1117/12.879938

Google Scholar