Spectrophotometric Study of Cobalt (II) Chlorocomplexes in Methanol in the Visible Domain

Article Preview

Abstract:

Cobalt(II) chlorocomplexes were studied in a polar protic solvent namely methanol at 25°C. The spectrophotometric technique in the visible region was used. The studied equilibrium is: Co2+ + j Cl- CoClj(j-2)-. Formation of three chlorocomplexes and a structural modification (Oh → Td) were obtained from recorded spectra analysis. The stability of CoCl+ was studied by the graphical method of Kruh and the overall stability constants were calculated with the SIRKO program based on the least-square method. Different models were tested and the model was retained for which the best values are: log β1 = 0.92, log β2 = 1.31 and log β3 = 1.08.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

170-173

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.A. Barakat, M. Rusan and D.T. Burns, Anal. Chim. Acta. Vol. 355 (1997), pp.163-170.

Google Scholar

[2] S. Jadhav,S.Utekar, A.Kulkarni, A.Varadarajan, S. Malve, Talanta Vol. 46 (1998), pp.1425-1432.

DOI: 10.1016/s0039-9140(98)00013-7

Google Scholar

[3] A.B. Tejam, and N. V. Thakkar, Indian J. Chem. Techn. Vol. 5 (1998), pp.155-158.

Google Scholar

[4] M. Stefova, T. Stalov and K. Stojanoski, Anal. Lett Vol. 30 (1997), pp.2723-2731.

Google Scholar

[5] S.G. Aggarwal, K.S. Patel, Fresenius J. Anal. Chem. Vol. 362 (1998), pp.571-576.

Google Scholar

[6] E.V. Alonso, J.C. Pavon, A. Rios and M. Valcarcel, Talanta Vol. 43 (1996), p.1941.

Google Scholar

[7] E. Bentouhami, M.A. Khan, J. Meullemeestre, M.J. Schwing and F. Vierling., Polyhedron Vol. 11 (1992), pp.2179-2182.

DOI: 10.1016/s0277-5387(00)83693-1

Google Scholar

[8] K. Fujii, Y. Umebayashi, R. Kanzaki, D. Kobayashi, R. Matsuura and S. Ishiguro, J Sol. Chem. Vol. 34 (2005), p.739.

Google Scholar

[9] H. Suzuki: Doctor thesis (Tokyo Institute of Technology, Japan, 1989).

Google Scholar

[10] F.A. Cotton, G. Wilkinson. in : Advanced Inorganic Chemistry, edited by John Wiley and sons,5th Edn, p.727 and 730, New York (1988).

Google Scholar

[11] H. Hubacek, B. Stacie and V. Gutmann, Monatch. Chem. Vol. 94 (1963), p.1118.

Google Scholar

[12] V. Gutmann and H. Bardy. Monatsh. Chem. Vol. 99 (1968), p.763.

Google Scholar

[13] F.A. Cotton and G. Wilkinson in: Advanced Inorganic Chemistry., edited by Wiley 4th Edn, p.768, New York (1980).

Google Scholar

[14] E.P. Buchikhin, A.M. Chekmarev, A.Yu. Kuznetsov and A. V. Ulanov, General Chemistry Vol. 74,6, (2004), pp.818-820.

DOI: 10.1023/b:rugc.0000042415.41334.7c

Google Scholar

[15] M. Ichihashi, H. Wakita and I. Masuda, Solution Chemistry Vol. 13 (1984), p.7.

Google Scholar

[16] S. Ishiguro and K. Ozutsumi, Inorg. Chem. Vol. 29 (1990), p.1117.

Google Scholar

[17] A. Chioub-Fellah, F. Vierling, J. Meullemeestre, M. Schwing and M. khan, Coord. Chem., Vol. 62 (2009), pp.1572-1583.

Google Scholar

[18] M. Vranes, S.B. Gadzuric and I.J. Zsigrai, J. Mol. Liq Vol. 135 (2007), pp.135-141.

Google Scholar

[19] A. Chiboub-Fellah, M. A. Khan, J. Meullemeestre, C. Spies and F. Vierling. Transition Met. Chem. Vol. 24 (1999), pp.135-140.

DOI: 10.1023/a:1006910310635

Google Scholar

[20] T. Djekic, Z. Zivkovic, A. Van der Ham, A. de Haan. Appl. Catal. A Vol. 312 (2006), p.144.

Google Scholar

[21] K. Hirose. J. Incl. Phenom. Macrocycl. Chem. Vol. 39 (2001), pp.193-209.

Google Scholar

[22] S. Lechat, M. Khan, G. Bouet and F. Vierling, lnorg. Chim. Acta Vol. 211 (1993), pp.33-36.

Google Scholar

[23] K. Kurzak, I. Biernacka, B. Zurowska, Journal of Solution Chem. Vol. 28 (1999), pp.133-151.

Google Scholar

[24] M. Khan, G. Bouet, R. Tanveer, R. Ahmed, Inorganic Biochemistry Vol.75 (1999), p.79–83.

Google Scholar

[25] H.B. Silber and M. Murguia, Inorg. Chem. Vol. 24 (1985), pp.3794-3802.

Google Scholar

[26] J. Bjerrum, Coord. Chem. Rev. Vol. 100, (1990), p.105.

Google Scholar

[27] H. Waki and Y. Miyazaki, Polyhedron Vol 8 (1989), pp.859-864.

Google Scholar

[28] S.B. Gadžurić, I.J. Zsigrai and R.M. Nikolić, J. Mol. Liq. Vol. 83 (1999), p.75.

Google Scholar

[29] J. Savovic, R. Nikolic and D. Kerridge, Fluid Phase Equilibria Vol. 118, (1996), pp.143-151.

Google Scholar

[30] I.J. Zsigrai, S.B. Gadzuric, R. Nikolic, L. Nagy, Z. Natur forsch. Vol. 59a (2004), P. 602.

Google Scholar

[31] J. Savovic, R. Nikolic and D. Veselinovic, J. Solution Chem. Vol. 33, (2004), pp.287-300.

Google Scholar

[32] I.J. Zsigrai, S.B. Gadzuric, B. Matijevic, Z. Naturforsch. Vol. 60a, (2005), pp.201-206.

Google Scholar

[33] T.S. Markov and O.V. Yanush, Applied chem. Vol. 81 (2008), pp.779-785.

Google Scholar

[34] M.A. Khan and G. Bouet, Transition Met. Chem. Vol. 21 (1996), pp.231-234.

Google Scholar

[35] R. Kruh, J. Am. Chem. Soc. Vol. 76, (1954), p.4865.

Google Scholar

[36] V. Vetrogon, N. Lukyanenko, J.Weill, F. Arnaud-Neu, Talanta Vol. 41 (1994), pp.2105-2112.

DOI: 10.1016/0039-9140(94)00187-1

Google Scholar

[37] Z.Z. Hugus and A.A. El Awady, J. Phys. Chem. Vol. 75 (1971), p.2954.

Google Scholar